DOReN: Toward Efficient Deep Convolutional Neural Networks with Fully Homomorphic Encryption

同态加密 计算机科学 可扩展性 密文 加密 密码学 卷积神经网络 密码原语 理论计算机科学 人工智能 计算机工程 算法 计算机网络 密码协议 操作系统
作者
Souhail Meftah,Benjamin Hong Meng Tan,Chan Fook Mun,Khin Mi Mi Aung,Bharadwaj Veeravalli,Vijay Chandrasekhar
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 3740-3752 被引量:55
标识
DOI:10.1109/tifs.2021.3090959
摘要

Fully homomorphic encryption (FHE) is a powerful cryptographic primitive to secure outsourced computations against an untrusted third-party provider. With the growing demand for AI and the usefulness of machine learning as a service (MLaaS), the need for secure training and inference of artificial neural networks is rising. However, the computational complexity of existing FHE schemes has been a strong deterrent to this. Prior works suffered from accuracy degradation, lack of scalability, and ciphertext expansion issues. In this paper, we take the first step towards the problem of space-efficiency in evaluating deep neural networks through designing DOReN: a low depth, batched neuron that can simultaneously evaluate multiple quantized ReLU-activated neurons on encrypted data without approximations. Our circuit design reduced the complexity of the accumulator circuit depth from O(logm ·logn) to O(logm + logn) for n bit integers. The experimental results show that the amortized processing time of our homomorphic neuron is approximately 1.26 seconds for 300 inputs and less than 0.13 seconds for 10 inputs at 80 bit security, which is a 20 fold improvement upon Lou and Jiang, NeurIPS 2019.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助还不如瞎写采纳,获得10
刚刚
半凡发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
石石刘完成签到 ,获得积分10
2秒前
顺利毕业完成签到,获得积分10
3秒前
端庄冷荷完成签到 ,获得积分10
3秒前
3秒前
haoliu完成签到,获得积分10
3秒前
3秒前
阳光完成签到,获得积分10
4秒前
小飞完成签到,获得积分20
5秒前
Zzz完成签到,获得积分10
5秒前
5秒前
5秒前
Akim应助TRISTE采纳,获得10
6秒前
6秒前
shentucc完成签到,获得积分20
6秒前
6秒前
7秒前
SY完成签到,获得积分10
7秒前
龙晴完成签到 ,获得积分10
8秒前
8秒前
9秒前
1234发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
所就欧克发布了新的文献求助10
10秒前
11秒前
瞳瞳爱吃巴斯克完成签到 ,获得积分10
12秒前
13秒前
月星发布了新的文献求助10
13秒前
赘婿应助赫连紫采纳,获得10
13秒前
13秒前
英吉利25发布了新的文献求助10
13秒前
爱学习的医学小白完成签到 ,获得积分10
14秒前
Fortune发布了新的文献求助10
14秒前
yuanbenshimao完成签到 ,获得积分10
14秒前
公龟应助高皮皮采纳,获得10
14秒前
可靠伟泽发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809