亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助秋日思语采纳,获得10
13秒前
15秒前
28秒前
34秒前
ckmen5发布了新的文献求助10
35秒前
li发布了新的文献求助10
39秒前
40秒前
41秒前
秋日思语发布了新的文献求助10
45秒前
Hanzoe应助袁青寒采纳,获得10
46秒前
英姑应助可个可可采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CipherSage应助秋日思语采纳,获得10
1分钟前
1分钟前
可个可可发布了新的文献求助10
1分钟前
zhu完成签到,获得积分10
1分钟前
1分钟前
大胆楷瑞发布了新的文献求助10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
科研通AI5应助大胆楷瑞采纳,获得10
1分钟前
大胆楷瑞完成签到,获得积分20
1分钟前
fdwang完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ZPQ完成签到 ,获得积分10
2分钟前
Min发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
2分钟前
yyyyyy完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Min完成签到,获得积分10
3分钟前
秋日思语发布了新的文献求助10
3分钟前
zqq完成签到,获得积分0
4分钟前
4分钟前
krajicek发布了新的文献求助10
4分钟前
4分钟前
ckmen5发布了新的文献求助10
4分钟前
li发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611223
求助须知:如何正确求助?哪些是违规求助? 4016803
关于积分的说明 12435729
捐赠科研通 3698610
什么是DOI,文献DOI怎么找? 2039580
邀请新用户注册赠送积分活动 1072396
科研通“疑难数据库(出版商)”最低求助积分说明 956056