SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hygge完成签到,获得积分10
刚刚
周钦完成签到,获得积分10
1秒前
FashionBoy应助有机分子笼采纳,获得10
2秒前
共享精神应助zh采纳,获得10
3秒前
3秒前
shc完成签到 ,获得积分10
5秒前
希望天下0贩的0应助小玉采纳,获得10
6秒前
烟花应助yy采纳,获得10
7秒前
李爱国应助Transition采纳,获得10
9秒前
zzzwww完成签到,获得积分10
9秒前
10秒前
阿白完成签到,获得积分10
11秒前
12秒前
12秒前
陈军应助kwm采纳,获得10
12秒前
sganthem完成签到,获得积分10
13秒前
苏苏发布了新的文献求助10
14秒前
14秒前
Baobao发布了新的文献求助10
15秒前
古月发布了新的文献求助10
15秒前
顾矜应助默默采纳,获得10
16秒前
YangMengting完成签到 ,获得积分10
16秒前
67777完成签到,获得积分10
16秒前
李鱼丸发布了新的文献求助10
18秒前
19秒前
苏苏完成签到,获得积分10
23秒前
巫马尔槐完成签到,获得积分10
23秒前
23秒前
向响响发布了新的文献求助10
24秒前
活力的柠檬完成签到,获得积分10
24秒前
szy完成签到,获得积分10
27秒前
jy关闭了jy文献求助
29秒前
汉堡包应助小超哥哥小采纳,获得10
29秒前
32秒前
聪明笑蓝发布了新的文献求助20
35秒前
mue完成签到,获得积分10
37秒前
聪慧芷巧发布了新的文献求助10
37秒前
z落水无痕完成签到,获得积分10
38秒前
40秒前
共享精神应助stresm采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724