SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助llzuo采纳,获得10
刚刚
1秒前
HH完成签到,获得积分10
1秒前
华仔应助wozai采纳,获得10
2秒前
WL完成签到,获得积分10
2秒前
3秒前
4秒前
小铭发布了新的文献求助10
5秒前
ahh完成签到 ,获得积分10
5秒前
5秒前
WL发布了新的文献求助20
6秒前
XiHuanChi完成签到,获得积分10
7秒前
cz完成签到,获得积分10
7秒前
Orange应助舒心小海豚采纳,获得10
7秒前
李爱国应助斯文明杰采纳,获得10
7秒前
温婉的曼冬完成签到,获得积分10
7秒前
Eternity2025发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
yu发布了新的文献求助10
10秒前
3636完成签到,获得积分10
10秒前
木木发布了新的文献求助10
11秒前
明亮的没完成签到,获得积分10
12秒前
13456发布了新的文献求助10
13秒前
小二郎应助节步青采纳,获得10
13秒前
Ronnie0925发布了新的文献求助10
14秒前
情怀应助激情的不弱采纳,获得10
14秒前
14秒前
15秒前
一念永恒发布了新的文献求助10
15秒前
15秒前
15秒前
llzuo发布了新的文献求助10
16秒前
16秒前
莫莫完成签到,获得积分10
17秒前
上官若男应助木木采纳,获得10
18秒前
窝恁叠完成签到,获得积分10
19秒前
月落完成签到 ,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652