SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaijy87完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
ZHEN发布了新的文献求助10
刚刚
可靠的思烟完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
啊亮发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
地球发布了新的文献求助20
2秒前
DKY发布了新的文献求助20
2秒前
2秒前
2秒前
一个奎发布了新的文献求助10
2秒前
2秒前
逍遥子完成签到,获得积分10
3秒前
3秒前
3秒前
蜂鸟5156发布了新的文献求助10
3秒前
陈梦鼠发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
情怀应助腼腆的山彤采纳,获得10
4秒前
4秒前
yy关注了科研通微信公众号
4秒前
陈梦鼠发布了新的文献求助10
4秒前
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656