SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助小炒采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得20
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
不安青牛应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
所愿所得应助科研通管家采纳,获得10
2秒前
张瀚文发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
七七完成签到 ,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
小二郎应助ly采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
just应助科研通管家采纳,获得10
2秒前
所愿所得应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI5应助meikoo采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
小赵完成签到,获得积分10
3秒前
3秒前
3秒前
wanci应助胖虎不胖采纳,获得10
3秒前
靓丽一寡发布了新的文献求助10
4秒前
lihua完成签到 ,获得积分10
4秒前
Sun完成签到,获得积分10
4秒前
4秒前
4秒前
amanda完成签到 ,获得积分10
4秒前
5秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488034
求助须知:如何正确求助?哪些是违规求助? 3075861
关于积分的说明 9142479
捐赠科研通 2768110
什么是DOI,文献DOI怎么找? 1518966
邀请新用户注册赠送积分活动 703449
科研通“疑难数据库(出版商)”最低求助积分说明 701864