Image Motion Extraction of Structures Using Computer Vision Techniques: A Comparative Study

流离失所(心理学) 数字图像相关 插值(计算机图形学) 双线性插值 人工智能 光流 均方误差 计算机视觉 计算机科学 情态动词 数学 光学 材料科学 运动(物理) 物理 图像(数学) 统计 心理学 高分子化学 心理治疗师
作者
Jau‐Yu Chou,Chia‐Ming Chang
出处
期刊:Sensors [MDPI AG]
卷期号:21 (18): 6248-6248 被引量:8
标识
DOI:10.3390/s21186248
摘要

Vibrational measurements play an important role for structural health monitoring, e.g., modal extraction and damage diagnosis. Moreover, conditions of civil structures can be mostly assessed by displacement responses. However, installing displacement transducers between the ground and floors in real-world buildings is unrealistic due to lack of reference points and structural scales and complexity. Alternatively, structural displacements can be acquired using computer vision-based motion extraction techniques. These extracted motions not only provide vibrational responses but are also useful for identifying the modal properties. In this study, three methods, including the optical flow with the Lucas–Kanade method, the digital image correlation (DIC) with bilinear interpolation, and the in-plane phase-based motion magnification using the Riesz pyramid, are introduced and experimentally verified using a four-story steel-frame building with a commercially available camera. First, the three displacement acquiring methods are introduced in detail. Next, the displacements are experimentally obtained from these methods and compared to those sensed from linear variable displacement transducers. Moreover, these displacement responses are converted into modal properties by system identification. As seen in the experimental results, the DIC method has the lowest average root mean squared error (RMSE) of 1.2371 mm among these three methods. Although the phase-based motion magnification method has a larger RMSE of 1.4132 mm due to variations in edge detection, this method is capable of providing full-field mode shapes over the building.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jjn应助nyfz2002采纳,获得10
2秒前
2秒前
3秒前
司空天磊完成签到,获得积分10
3秒前
碧蓝羽毛完成签到,获得积分10
3秒前
岁岁完成签到 ,获得积分10
4秒前
4秒前
vv完成签到 ,获得积分10
5秒前
5秒前
gavin完成签到,获得积分20
5秒前
5秒前
飞在夏夜的猫完成签到,获得积分10
6秒前
核桃小小苏完成签到,获得积分10
6秒前
万能图书馆应助zlh采纳,获得10
6秒前
禅心发布了新的文献求助10
7秒前
zz完成签到,获得积分10
7秒前
7秒前
tana98906完成签到 ,获得积分10
7秒前
大河细流发布了新的文献求助10
8秒前
8秒前
DMUXLW完成签到,获得积分10
8秒前
mm完成签到,获得积分10
8秒前
务实的犀牛完成签到,获得积分10
8秒前
9秒前
汉堡包应助蔡伟峰采纳,获得20
9秒前
聪明铸海完成签到,获得积分10
9秒前
WHITE完成签到,获得积分10
10秒前
阳光的雪珊完成签到 ,获得积分10
10秒前
科研通AI2S应助谦让疾采纳,获得10
10秒前
10秒前
11秒前
11秒前
yznfly应助元谷雪采纳,获得30
11秒前
11秒前
12秒前
lay完成签到,获得积分10
12秒前
深情安青应助洁净雨采纳,获得10
13秒前
烟花应助shipcap采纳,获得30
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698957
求助须知:如何正确求助?哪些是违规求助? 5127856
关于积分的说明 15223496
捐赠科研通 4853894
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555882
关于科研通互助平台的介绍 1514222