Differentiating Benign from Malignant Renal Tumors Using T2‐ and Diffusion‐Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists

无线电技术 医学 接收机工作特性 放射科 回顾性队列研究 队列 磁共振弥散成像 有效扩散系数 磁共振成像 核医学 曲线下面积 病理 内科学
作者
Qing Xu,Qingqiang Zhu,Hao Liu,Lu-fan Chang,Shaofeng Duan,Weiqiang Dou,SaiYang Li,Jing Ye
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (4): 1251-1259 被引量:34
标识
DOI:10.1002/jmri.27900
摘要

Background Differentiating benign from malignant renal tumors is important for selection of the most effective treatment. Purpose To develop magnetic resonance imaging (MRI)‐based deep learning (DL) models for differentiation of benign and malignant renal tumors and to compare their discrimination performance with the performance of radiomics models and assessment by radiologists. Study Type Retrospective. Population A total of 217 patients were randomly assigned to a training cohort ( N = 173) or a testing cohort ( N = 44). Field Strength/Sequence Diffusion‐weighted imaging (DWI) and fast spin‐echo sequence T2‐weighted imaging (T2WI) at 3.0T. Assessment A radiologist manually labeled the region of interest (ROI) on each image. Three DL models using ResNet‐18 architecture and three radiomics models using random forest were developed using T2WI alone, DWI alone, and a combination of the two image sets to discriminate between benign and malignant renal tumors. The diagnostic performance of two radiologists was assessed based on professional experience. We also compared the performance of each model and the radiologists. Statistical Tests The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of each model and the radiologists. P < 0.05 indicated statistical significance. Results The AUC of the DL models based on T2WI, DWI, and the combination was 0.906, 0.846, and 0.925 in the testing cohorts, respectively. The AUC of the combination DL model was significantly better than that of the models based on individual sequences (0.925 > 0.906, 0.925 > 0.846). The AUC of the radiomics models based on T2WI, DWI, and the combination was 0.824, 0.742, and 0.826 in the testing cohorts, respectively. The AUC of two radiologists was 0.724 and 0.667 in the testing cohorts. Conclusion Thus, the MRI‐based DL model is useful for differentiating benign from malignant renal tumors in clinic, and the DL model based on T2WI + DWI had the best performance. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bkagyin应助猪猪hero采纳,获得10
2秒前
伊丽莎白完成签到 ,获得积分10
2秒前
2秒前
2秒前
拔丝香芋发布了新的文献求助10
5秒前
念姬发布了新的文献求助10
7秒前
7秒前
7秒前
阿蒙完成签到,获得积分10
8秒前
9秒前
10秒前
科研F5完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
乒坛巨人发布了新的文献求助10
14秒前
CHAIZH发布了新的文献求助10
15秒前
脑洞疼应助曦小蕊采纳,获得10
15秒前
火以敬完成签到,获得积分10
15秒前
笨笨松发布了新的文献求助10
15秒前
xx完成签到,获得积分10
17秒前
猪猪hero发布了新的文献求助10
18秒前
完美世界应助尺素寸心采纳,获得10
18秒前
靳欣怡完成签到,获得积分10
19秒前
Suttier发布了新的文献求助10
19秒前
bystanding完成签到,获得积分10
22秒前
22秒前
22秒前
SC发布了新的文献求助10
23秒前
ll应助自然的砖头采纳,获得10
24秒前
ll应助自然的砖头采纳,获得10
24秒前
情怀应助春天采纳,获得10
26秒前
英姑应助利昂采纳,获得10
26秒前
宝林发布了新的文献求助10
27秒前
27秒前
pj发布了新的文献求助10
28秒前
科目三应助细心语堂采纳,获得10
28秒前
完美毛豆完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432