亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differentiating Benign from Malignant Renal Tumors Using T2‐ and Diffusion‐Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists

无线电技术 医学 接收机工作特性 放射科 回顾性队列研究 队列 磁共振弥散成像 有效扩散系数 磁共振成像 核医学 曲线下面积 病理 内科学
作者
Qing Xu,Qingqiang Zhu,Hao Liu,Lu-Fan Chang,Shaofeng Duan,Weiqiang Dou,SaiYang Li,Jing Ye
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (4): 1251-1259 被引量:29
标识
DOI:10.1002/jmri.27900
摘要

Differentiating benign from malignant renal tumors is important for selection of the most effective treatment.To develop magnetic resonance imaging (MRI)-based deep learning (DL) models for differentiation of benign and malignant renal tumors and to compare their discrimination performance with the performance of radiomics models and assessment by radiologists.Retrospective.A total of 217 patients were randomly assigned to a training cohort (N = 173) or a testing cohort (N = 44).Diffusion-weighted imaging (DWI) and fast spin-echo sequence T2-weighted imaging (T2WI) at 3.0T.A radiologist manually labeled the region of interest (ROI) on each image. Three DL models using ResNet-18 architecture and three radiomics models using random forest were developed using T2WI alone, DWI alone, and a combination of the two image sets to discriminate between benign and malignant renal tumors. The diagnostic performance of two radiologists was assessed based on professional experience. We also compared the performance of each model and the radiologists.The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of each model and the radiologists. P < 0.05 indicated statistical significance.The AUC of the DL models based on T2WI, DWI, and the combination was 0.906, 0.846, and 0.925 in the testing cohorts, respectively. The AUC of the combination DL model was significantly better than that of the models based on individual sequences (0.925 > 0.906, 0.925 > 0.846). The AUC of the radiomics models based on T2WI, DWI, and the combination was 0.824, 0.742, and 0.826 in the testing cohorts, respectively. The AUC of two radiologists was 0.724 and 0.667 in the testing cohorts.Thus, the MRI-based DL model is useful for differentiating benign from malignant renal tumors in clinic, and the DL model based on T2WI + DWI had the best performance.3 TECHNICAL EFFICACY STAGE: 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BEGIN发布了新的文献求助10
3秒前
11秒前
赞zan发布了新的文献求助10
16秒前
赞zan完成签到,获得积分10
21秒前
Lucas应助科研通管家采纳,获得10
37秒前
57秒前
sunshine发布了新的文献求助10
1分钟前
华仔应助xiaoxiaoz采纳,获得10
1分钟前
BEGIN发布了新的文献求助10
1分钟前
迪亚波罗发布了新的文献求助10
1分钟前
1分钟前
小火锅发布了新的文献求助10
1分钟前
迪亚波罗完成签到,获得积分20
1分钟前
小火锅完成签到,获得积分10
2分钟前
华仔应助BEGIN采纳,获得10
2分钟前
脑洞疼应助火焰向上采纳,获得10
2分钟前
Georgechan完成签到,获得积分10
2分钟前
2分钟前
蟹治猿完成签到 ,获得积分10
2分钟前
火焰向上发布了新的文献求助10
2分钟前
文渊完成签到,获得积分0
2分钟前
Ava应助火焰向上采纳,获得10
3分钟前
3分钟前
火焰向上发布了新的文献求助10
3分钟前
4分钟前
BEGIN发布了新的文献求助10
4分钟前
深情安青应助BEGIN采纳,获得10
4分钟前
张起灵完成签到 ,获得积分10
5分钟前
Lucas应助obsidian_virgo采纳,获得10
5分钟前
obsidian_virgo完成签到,获得积分20
5分钟前
6分钟前
BEGIN发布了新的文献求助10
6分钟前
大模型应助野椒搞科研采纳,获得10
6分钟前
CipherSage应助BEGIN采纳,获得10
7分钟前
培培完成签到 ,获得积分10
7分钟前
Phaladius完成签到 ,获得积分10
7分钟前
7分钟前
Phaladius发布了新的文献求助10
8分钟前
8分钟前
BEGIN发布了新的文献求助10
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294545
求助须知:如何正确求助?哪些是违规求助? 2930483
关于积分的说明 8446093
捐赠科研通 2602677
什么是DOI,文献DOI怎么找? 1420700
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433