Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms

RGB颜色模型 人工智能 算法 均方误差 数学 机器学习 计算机科学 统计
作者
Zhengchao Qiu,Fei Ma,Zhenwang Li,Xuebin Xu,Haixiao Ge,Changwen Du
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:189: 106421-106421 被引量:72
标识
DOI:10.1016/j.compag.2021.106421
摘要

Rapid and accurate estimation of rice Nitrogen Nutrition Index (NNI) is beneficial for management of nitrogen application in rice production. Traditional estimation methods required manual actual measurement data in the field, which was time-consuming and cost-expensive, and RGB images from unmanned aerial vehicle (UAV) provided an alternative option for nitrogen nutrition index (NNI) monitoring. In this study, RGB images from unmanned aerial vehicle (UAV) were obtained from each growth period of rice, and six machine learning (ML) algorithms, i.e., adaptive boosting (AB), artificial neural network (ANN), K-nearest neighbor (KNN), partial least squares (PLSR), random forest (RF) and support vector machine (SVM), were used to extract target information for estimating NNI as well as vegetation index (VI). Results showed that most UAV VIs were significantly correlated with rice NNI at the key growing periods; the estimation results of rice NNI using six ML algorithms showed that the RF algorithms performed the best at each growth period with the determination coefficient (R2) ranged from 0.88 to 0.96 and room mean square error (RMSE) ranged from 0.03 to 0.07, in which the estimation of NNI was the best in filling period and the early jointing stage. Rice NNI at the early jointing stage was significantly correlated with soil available nitrogen (AN) with the R2 of 0.84 in Pukou and 0.72 in Luhe, respectively, and rice NNI was significantly correlated with the yield with the R2 of more than 0.7 in Pukou at the whole period and more than 0.7 in Luhe from late jointing to maturity stage. Therefore, the combination of RGB images from UAV and ML algorithms was a scalable, simple and inexpensive method for rapid qualification of rice NNI, which effectively improved nitrogen use efficiency and provided guidance for precision fertilization in rice production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助爱丽丝敏采纳,获得10
1秒前
莫离发布了新的文献求助10
1秒前
Jasper应助张祖伦采纳,获得10
1秒前
1秒前
书晨发布了新的文献求助10
2秒前
2秒前
2秒前
guangyu发布了新的文献求助10
2秒前
李明发布了新的文献求助10
3秒前
马娟琼发布了新的文献求助30
4秒前
小丫完成签到,获得积分10
4秒前
完美世界应助houxufeng采纳,获得10
4秒前
4秒前
清爽的向南完成签到 ,获得积分10
5秒前
Hello应助清秀的帽子采纳,获得10
5秒前
wzx完成签到,获得积分10
5秒前
ding应助elf采纳,获得10
8秒前
8秒前
酷酷的老太完成签到,获得积分10
8秒前
yyq发布了新的文献求助10
8秒前
兀那狗子别跑完成签到,获得积分10
8秒前
9秒前
9秒前
NexusExplorer应助alkali采纳,获得10
9秒前
就这发布了新的文献求助20
9秒前
hxy完成签到,获得积分10
10秒前
11秒前
马娟琼完成签到,获得积分20
11秒前
11秒前
11秒前
大美女发布了新的文献求助10
12秒前
liberal777完成签到 ,获得积分10
12秒前
哈尼给哈尼的求助进行了留言
12秒前
Ava应助byyyy采纳,获得10
13秒前
14秒前
14秒前
fr0zen完成签到,获得积分10
14秒前
yan1875完成签到,获得积分10
15秒前
Jasper应助独特惋清采纳,获得10
16秒前
16秒前
高分求助中
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3109561
求助须知:如何正确求助?哪些是违规求助? 2760219
关于积分的说明 7659157
捐赠科研通 2414928
什么是DOI,文献DOI怎么找? 1281538
科研通“疑难数据库(出版商)”最低求助积分说明 618679
版权声明 599445