Evaporation of the volatile solute from the liquid phase is a common problem for the crystal grown from solution, especially for the growth under high temperature. In the present study, a numerical model was constructed to quantitatively investigate the evaporation process in crystal growth. This model was applied in top-seeded solution growth (TSSG) of SiC crystal to simulate the transport of aluminum (Al), which is important for crystal surface morphology but easy to vaporize. The transport path of Al in the growth system was determined by analyzing the possible reactions on different boundaries. Accordingly, an improved structure was proposed to suppress the evaporation loss of Al during long-term growth, and was compared with the original case both numerically and experimentally. The simulation results showed that the improved structure could effectively decrease the Al loss by over 70%, and meanwhile had almost no influence on the thermal and flow environment in the solution. For the experimental results, the improved case presented much lower spontaneous nucleation possibilities and higher step height on the crystal surface, which matched well with the features of high Al addition in literatures. Therefore, the improved structure proposed in the present study was proven to be effective to enhance the composition stability of solution during long-term SiC solution growth, and this numerical method could be applied in the growth of other crystals facing the similar problem.