Numerical investigation of solute evaporation in crystal growth from solution: A case study of SiC growth by TSSG method

蒸发 成核 晶体生长 Crystal(编程语言) 化学 材料科学 相(物质) 热力学 化学物理 结晶学 物理 有机化学 计算机科学 程序设计语言
作者
Yifan Dang,Can Zhu,Xin Liu,Wancheng Yu,Xinbo Liu,Koki Suzuki,Tomoaki Furusho,Shunta Harada,Miho Tagawa,Toru Ujihara
出处
期刊:Journal of Crystal Growth [Elsevier BV]
卷期号:579: 126448-126448 被引量:11
标识
DOI:10.1016/j.jcrysgro.2021.126448
摘要

Evaporation of the volatile solute from the liquid phase is a common problem for the crystal grown from solution, especially for the growth under high temperature. In the present study, a numerical model was constructed to quantitatively investigate the evaporation process in crystal growth. This model was applied in top-seeded solution growth (TSSG) of SiC crystal to simulate the transport of aluminum (Al), which is important for crystal surface morphology but easy to vaporize. The transport path of Al in the growth system was determined by analyzing the possible reactions on different boundaries. Accordingly, an improved structure was proposed to suppress the evaporation loss of Al during long-term growth, and was compared with the original case both numerically and experimentally. The simulation results showed that the improved structure could effectively decrease the Al loss by over 70%, and meanwhile had almost no influence on the thermal and flow environment in the solution. For the experimental results, the improved case presented much lower spontaneous nucleation possibilities and higher step height on the crystal surface, which matched well with the features of high Al addition in literatures. Therefore, the improved structure proposed in the present study was proven to be effective to enhance the composition stability of solution during long-term SiC solution growth, and this numerical method could be applied in the growth of other crystals facing the similar problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
塔卡完成签到,获得积分10
1秒前
1秒前
小二郎应助双儿采纳,获得10
1秒前
笑点低代萱完成签到,获得积分10
2秒前
甜甜完成签到,获得积分10
2秒前
晴空万里应助黄天采纳,获得10
4秒前
金岁岁完成签到 ,获得积分10
4秒前
4秒前
李健应助不会取名字采纳,获得10
5秒前
米米应助白白采纳,获得30
5秒前
HAHAHA完成签到,获得积分10
5秒前
狐妖发布了新的文献求助10
6秒前
8秒前
情怀应助Wiz111采纳,获得10
8秒前
9秒前
饶天源发布了新的文献求助10
9秒前
刘博虎完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助150
11秒前
zzq完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
小马甲应助小白采纳,获得10
11秒前
12秒前
12秒前
英姑应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
GPTea应助科研通管家采纳,获得150
13秒前
GPTea应助科研通管家采纳,获得50
13秒前
科研通AI6应助科研通管家采纳,获得150
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
14秒前
李健应助科研通管家采纳,获得10
14秒前
是我发布了新的文献求助30
14秒前
张贵虎发布了新的文献求助10
14秒前
SciGPT应助乾雨采纳,获得10
14秒前
高大莺发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062344
求助须知:如何正确求助?哪些是违规求助? 4286094
关于积分的说明 13356468
捐赠科研通 4103977
什么是DOI,文献DOI怎么找? 2247194
邀请新用户注册赠送积分活动 1252812
关于科研通互助平台的介绍 1183746