iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest

随机森林 特征选择 计算生物学 模式识别(心理学) 计算机科学 二肽 人工智能 特征(语言学) 特征提取 分类器(UML) 数学 生物 生物化学 语言学 哲学
作者
Dongxu Zhao,Zhixia Teng,Yanjuan Li,Dong Chen
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:12 被引量:17
标识
DOI:10.3389/fgene.2021.773202
摘要

Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
欢喜涫发布了新的文献求助10
1秒前
活力成败完成签到,获得积分10
2秒前
深情安青应助明凡采纳,获得10
4秒前
1111发布了新的文献求助10
4秒前
戴红亮完成签到,获得积分20
4秒前
CipherSage应助kk采纳,获得10
5秒前
游羽完成签到,获得积分10
5秒前
smiles完成签到,获得积分20
5秒前
5秒前
深情安青应助jie采纳,获得10
6秒前
6秒前
BX发布了新的文献求助10
7秒前
9秒前
6666发布了新的文献求助10
9秒前
阿潇发布了新的文献求助10
9秒前
丁鹏笑完成签到 ,获得积分0
9秒前
10秒前
10秒前
快乐滑板应助x1nger采纳,获得10
10秒前
会撒娇的以冬完成签到,获得积分10
10秒前
SYLH应助1111采纳,获得10
10秒前
NexusExplorer应助1111采纳,获得30
10秒前
善学以致用应助香蕉冬云采纳,获得10
11秒前
11秒前
julia应助zy123采纳,获得50
11秒前
皮念寒发布了新的文献求助10
11秒前
郎琳完成签到,获得积分10
12秒前
尊敬小馒头完成签到 ,获得积分10
12秒前
12秒前
削菠萝完成签到,获得积分10
12秒前
kk完成签到,获得积分10
13秒前
戴红亮发布了新的文献求助10
14秒前
14秒前
大皿同学完成签到,获得积分10
14秒前
自信的九娘完成签到,获得积分10
14秒前
lyyyy发布了新的文献求助10
15秒前
SciGPT应助xavier采纳,获得10
15秒前
我真的行完成签到,获得积分10
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253