Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation

催化作用 化学 插层(化学) 纳米材料 纳米颗粒 甲醇 化学工程 格子(音乐) 纳米晶 无机化学 纳米技术 材料科学 有机化学 工程类 物理 声学
作者
Guigao Liu,Wei Zhou,Yiru Ji,Bo Chen,Gengtao Fu,Qinbai Yun,Shuangming Chen,Yunxiang Lin,Pengfei Yin,Xiaoya Cui,Jiawei Liu,Fanqi Meng,Qinghua Zhang,Li Song,Lin Gu,Hua Zhang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (29): 11262-11270 被引量:211
标识
DOI:10.1021/jacs.1c05856
摘要

Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core–shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH0.43 by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mgPt–1 for methanol oxidation and 14.86 A mgPt–1 for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you完成签到,获得积分10
刚刚
季双洋完成签到,获得积分10
刚刚
苗条的十三完成签到,获得积分10
刚刚
刚刚
89完成签到,获得积分10
1秒前
Nafis完成签到,获得积分10
1秒前
薄荷味的猫完成签到,获得积分10
1秒前
CodeCraft应助jin采纳,获得10
1秒前
奋斗的凡发布了新的文献求助10
1秒前
3秒前
宝铭YUAN完成签到,获得积分10
3秒前
木木发布了新的文献求助10
3秒前
3秒前
lilili完成签到,获得积分10
3秒前
lhp完成签到,获得积分10
3秒前
陈微完成签到,获得积分10
3秒前
nuomici发布了新的文献求助10
4秒前
Ava应助虚幻采枫采纳,获得10
4秒前
4秒前
酷波er应助guozizi采纳,获得10
4秒前
萧萧落木天完成签到,获得积分10
4秒前
乔凌云完成签到 ,获得积分10
5秒前
科目三应助小碎步采纳,获得10
6秒前
852应助老实友蕊采纳,获得10
6秒前
6秒前
Drake101发布了新的文献求助10
6秒前
6秒前
7秒前
NexusExplorer应助碧蓝贞采纳,获得10
7秒前
科研通AI2S应助分歧者咋咋采纳,获得10
7秒前
无欲无求完成签到 ,获得积分20
7秒前
7秒前
获奖感言完成签到,获得积分10
8秒前
8秒前
慕青应助狐尔莫采纳,获得10
8秒前
8秒前
桶桶完成签到,获得积分20
8秒前
英俊的铭应助快乐小子采纳,获得10
8秒前
Stella应助Dali采纳,获得10
9秒前
忧心的洙完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997