Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners

细节 指纹(计算) 匹配(统计) 计算机科学 人工智能 模式识别(心理学) 指纹识别 山脊 指纹验证比赛 特征(语言学) Blossom算法 计算机视觉 数学 统计 哲学 古生物学 生物 语言学
作者
Wonjune Lee,Sungchul Cho,Heeseung Choi,Jaihie Kim
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:87: 183-198 被引量:40
标识
DOI:10.1016/j.eswa.2017.06.019
摘要

Currently, most mobile devices adopt very small fingerprint sensors that only capture small partial fingerprint images. Accordingly, conventional minutiae-based fingerprint matchers are not capable of providing convincing results due to the insufficiency of minutiae. To secure diverse mobile applications such as those requiring privacy protection and mobile payments, a more accurate fingerprint matcher is demanded. This manuscript proposes a new partial fingerprint-matching method incorporating new ridge shape features (RSFs) in addition to the conventional minutia features. These new RSFs represent the small ridge segments where specific edge shapes (concave and convex) are observed, and they are detectable in conventional 500 dpi images. The RSFs are effectively utilized in the proposed matching scheme which consists of minutiae matching and ridge-feature-matching stages. In the minutiae matching stage, corresponding minutia pairs are determined by comparing the local RSFs and minutiae adjacent to each minutia. During the subsequent ridge-feature-matching stage, the RSFs in the overlapped area of two images are further compared to enhance the matching accuracy. A final matching score is obtained by combining the resulting scores from the two matching stages. Various tests for partial matching were conducted on the FVC2002, FVC2004 and BERC (self-constructed) databases, and the proposed method shows significantly lower equal-error rates compared to other matching methods. The results show that the proposed method improves the accuracy of fingerprint recognition, especially for implementation in mobile devices where small fingerprint scanners are adopted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Lizhiiiy采纳,获得10
1秒前
1秒前
1秒前
南门街口的猫完成签到,获得积分10
2秒前
2秒前
犹豫梦旋完成签到,获得积分10
2秒前
wang完成签到,获得积分10
2秒前
SciGPT应助Hoodie采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
大个应助芒果柠檬采纳,获得10
8秒前
9秒前
9秒前
cc完成签到,获得积分0
9秒前
Reut_Hyu完成签到,获得积分10
10秒前
研友_V8Qmr8完成签到,获得积分10
11秒前
14秒前
Dinse完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
完美世界应助Andy采纳,获得10
18秒前
Hoodie发布了新的文献求助10
19秒前
调研昵称发布了新的文献求助10
19秒前
青青草完成签到,获得积分10
20秒前
ll发布了新的文献求助10
21秒前
22秒前
22秒前
轻松笙发布了新的文献求助10
23秒前
LLLi完成签到,获得积分20
23秒前
123发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512612
求助须知:如何正确求助?哪些是违规求助? 3095042
关于积分的说明 9225769
捐赠科研通 2789869
什么是DOI,文献DOI怎么找? 1530915
邀请新用户注册赠送积分活动 711213
科研通“疑难数据库(出版商)”最低求助积分说明 706650