Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners

细节 指纹(计算) 匹配(统计) 计算机科学 人工智能 模式识别(心理学) 指纹识别 山脊 指纹验证比赛 特征(语言学) Blossom算法 计算机视觉 数学 统计 古生物学 语言学 哲学 生物
作者
Wonjune Lee,Sungchul Cho,Heeseung Choi,Jaihie Kim
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:87: 183-198 被引量:40
标识
DOI:10.1016/j.eswa.2017.06.019
摘要

Currently, most mobile devices adopt very small fingerprint sensors that only capture small partial fingerprint images. Accordingly, conventional minutiae-based fingerprint matchers are not capable of providing convincing results due to the insufficiency of minutiae. To secure diverse mobile applications such as those requiring privacy protection and mobile payments, a more accurate fingerprint matcher is demanded. This manuscript proposes a new partial fingerprint-matching method incorporating new ridge shape features (RSFs) in addition to the conventional minutia features. These new RSFs represent the small ridge segments where specific edge shapes (concave and convex) are observed, and they are detectable in conventional 500 dpi images. The RSFs are effectively utilized in the proposed matching scheme which consists of minutiae matching and ridge-feature-matching stages. In the minutiae matching stage, corresponding minutia pairs are determined by comparing the local RSFs and minutiae adjacent to each minutia. During the subsequent ridge-feature-matching stage, the RSFs in the overlapped area of two images are further compared to enhance the matching accuracy. A final matching score is obtained by combining the resulting scores from the two matching stages. Various tests for partial matching were conducted on the FVC2002, FVC2004 and BERC (self-constructed) databases, and the proposed method shows significantly lower equal-error rates compared to other matching methods. The results show that the proposed method improves the accuracy of fingerprint recognition, especially for implementation in mobile devices where small fingerprint scanners are adopted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然有手就行完成签到,获得积分10
1秒前
1秒前
风中的善愁完成签到,获得积分10
1秒前
江江完成签到,获得积分10
2秒前
无花果应助动听的蛟凤采纳,获得10
3秒前
怡然云朵发布了新的文献求助10
3秒前
3秒前
4秒前
满座完成签到,获得积分10
4秒前
贫穷的塔姆完成签到,获得积分10
4秒前
huangbaba11完成签到 ,获得积分10
5秒前
5秒前
6秒前
将将完成签到,获得积分10
6秒前
周周完成签到,获得积分10
6秒前
科研通AI2S应助鲈鱼采纳,获得10
6秒前
7秒前
7秒前
二十而耳顺完成签到,获得积分20
7秒前
dhlswpu完成签到,获得积分10
7秒前
8秒前
Boring完成签到,获得积分10
8秒前
陌上疏完成签到,获得积分10
8秒前
珈蓝完成签到,获得积分10
9秒前
9秒前
萧水白应助莉莉采纳,获得10
9秒前
一颗烂番茄完成签到,获得积分10
10秒前
科研通AI2S应助luxian采纳,获得10
10秒前
Seiswan完成签到,获得积分10
10秒前
sx完成签到,获得积分10
10秒前
阿庆完成签到,获得积分10
10秒前
啊大大完成签到,获得积分10
11秒前
科研通AI2S应助WS采纳,获得10
11秒前
11秒前
HHEHK完成签到 ,获得积分10
12秒前
haidan完成签到,获得积分10
12秒前
13秒前
13秒前
wanci应助闫富扬采纳,获得10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118