Intramuscular interstitial cells of Cajal (ICC-IM) are closely associated with enteric motor nerve terminals and electrically coupled to smooth muscle cells within the gastric musculature. Previous studies investigating the role of ICC-IM in motor neurotransmission have used indiscriminate electric field stimulation of neural elements within the gastric wall. To determine the role of ICC-IM in transduction of vagally-mediated motor input to gastric muscles electrical and mechanical responses to selective electrical vagal stimulation (EVS) were recorded from gastric fundus and antral regions of wild type and W/WV mice, which lack most ICC-IM. EVS evoked inhibitory junction potentials (IJPs) in wild type muscles that were attenuated or abolished by L-NNA. IJPs were rarely evoked in W/WV muscles by EVS, and not affected by L-NNA. EVS evoked relaxation of wild type stomachs, but the predominant response of W/WV stomachs was contraction. EVS applied after pre-contraction with bethanechol caused relaxation of wild type gastric tissues and these were inhibited by the nitric oxide synthase inhibitor L-NNA. Relaxation responses were of smaller amplitude in W/WV muscles and L-NNA did not attenuate relaxation responses in W/WV fundus muscles. These data suggest an important role for ICC-IM in vagally-mediated nitrergic relaxation in the proximal and distal stomach.