The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution

N6-甲基腺苷 生物 转录组 转移RNA 碱基对 遗传学 序列母题 计算生物学 翻译(生物学) 信使核糖核酸 甲基化 核糖核酸 基因表达 基因 甲基转移酶
作者
Modi Safra,Aldema Sas‐Chen,Ronit Nir,Roni Winkler,Aharon Nachshon,Dan Bar-Yaacov,Matthias David Erlacher,Walter Rossmanith,Noam Stern‐Ginossar,Schraga Schwartz
出处
期刊:Nature [Springer Nature]
卷期号:551 (7679): 251-255 被引量:569
标识
DOI:10.1038/nature24456
摘要

Transcriptome-wide mapping of N1-methyladenosine (m1A) at single-nucleotide resolution reveals m1A to be scarce in cytoplasmic mRNA, to inhibit translation, and to be highly dynamic at a single site in a mitochondrial mRNA. N1-methyladenosine (m1A) modification has been detected on mRNA, but validation of the internal mRNA sites at which it occurs and the functional consequences of it have not been well defined. Schraga Schwartz and colleagues now address these limitations using a method that enables single-nucleotide resolution of such sites in the transcriptome. They show that the level of modification is much lower than reported previously and varies during development and by tissue type. The authors identify a structural motif associated with the modification and define the enzymatic machinery responsible for the methylation. They find that m1A modification is associated with translational repression, consistent with its tight regulation. Modifications on mRNA offer the potential of regulating mRNA fate post-transcriptionally. Recent studies suggested the widespread presence of N1-methyladenosine (m1A), which disrupts Watson–Crick base pairing, at internal sites of mRNAs1,2. These studies lacked the resolution of identifying individual modified bases, and did not identify specific sequence motifs undergoing the modification or an enzymatic machinery catalysing them, rendering it challenging to validate and functionally characterize putative sites. Here we develop an approach that allows the transcriptome-wide mapping of m1A at single-nucleotide resolution. Within the cytosol, m1A is present in a low number of mRNAs, typically at low stoichiometries, and almost invariably in tRNA T-loop-like structures, where it is introduced by the TRMT6/TRMT61A complex. We identify a single m1A site in the mitochondrial ND5 mRNA, catalysed by TRMT10C, with methylation levels that are highly tissue specific and tightly developmentally controlled. m1A leads to translational repression, probably through a mechanism involving ribosomal scanning or translation. Our findings suggest that m1A on mRNA, probably because of its disruptive impact on base pairing, leads to translational repression, and is generally avoided by cells, while revealing one case in mitochondria where tight spatiotemporal control over m1A levels was adopted as a potential means of post-transcriptional regulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
达不溜完成签到,获得积分10
2秒前
H小姐由于求助违规,被管理员扣积分60
2秒前
zhl发布了新的文献求助10
2秒前
YHL发布了新的文献求助10
2秒前
3秒前
乐乐应助英勇的严青采纳,获得10
3秒前
曦谷完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
郭志康完成签到,获得积分10
3秒前
3秒前
guo完成签到,获得积分20
3秒前
lan199623完成签到,获得积分10
4秒前
4秒前
lau发布了新的文献求助10
4秒前
GUO发布了新的文献求助10
4秒前
4秒前
4秒前
甲甲呱呱完成签到 ,获得积分10
4秒前
月岛滴滴完成签到,获得积分10
5秒前
科研通AI2S应助悠悠采纳,获得10
5秒前
毛毛哦啊发布了新的文献求助10
5秒前
6秒前
6秒前
京京发布了新的文献求助10
6秒前
6秒前
7秒前
搜集达人应助weixiaozdw采纳,获得10
7秒前
7秒前
香蕉觅云应助qq采纳,获得10
7秒前
晴天霹雳3732完成签到,获得积分10
7秒前
sun完成签到,获得积分10
8秒前
8秒前
guo发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587472
求助须知:如何正确求助?哪些是违规求助? 4670562
关于积分的说明 14783436
捐赠科研通 4622867
什么是DOI,文献DOI怎么找? 2531286
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468080