Transcriptome-wide mapping of N1-methyladenosine (m1A) at single-nucleotide resolution reveals m1A to be scarce in cytoplasmic mRNA, to inhibit translation, and to be highly dynamic at a single site in a mitochondrial mRNA. N1-methyladenosine (m1A) modification has been detected on mRNA, but validation of the internal mRNA sites at which it occurs and the functional consequences of it have not been well defined. Schraga Schwartz and colleagues now address these limitations using a method that enables single-nucleotide resolution of such sites in the transcriptome. They show that the level of modification is much lower than reported previously and varies during development and by tissue type. The authors identify a structural motif associated with the modification and define the enzymatic machinery responsible for the methylation. They find that m1A modification is associated with translational repression, consistent with its tight regulation. Modifications on mRNA offer the potential of regulating mRNA fate post-transcriptionally. Recent studies suggested the widespread presence of N1-methyladenosine (m1A), which disrupts Watson–Crick base pairing, at internal sites of mRNAs1,2. These studies lacked the resolution of identifying individual modified bases, and did not identify specific sequence motifs undergoing the modification or an enzymatic machinery catalysing them, rendering it challenging to validate and functionally characterize putative sites. Here we develop an approach that allows the transcriptome-wide mapping of m1A at single-nucleotide resolution. Within the cytosol, m1A is present in a low number of mRNAs, typically at low stoichiometries, and almost invariably in tRNA T-loop-like structures, where it is introduced by the TRMT6/TRMT61A complex. We identify a single m1A site in the mitochondrial ND5 mRNA, catalysed by TRMT10C, with methylation levels that are highly tissue specific and tightly developmentally controlled. m1A leads to translational repression, probably through a mechanism involving ribosomal scanning or translation. Our findings suggest that m1A on mRNA, probably because of its disruptive impact on base pairing, leads to translational repression, and is generally avoided by cells, while revealing one case in mitochondria where tight spatiotemporal control over m1A levels was adopted as a potential means of post-transcriptional regulation.