Deep learning classifier with optical coherence tomography images for early dental caries detection

光学相干层析成像 Softmax函数 人工智能 卷积神经网络 计算机科学 脱盐 分类器(UML) 深度学习 模式识别(心理学) 医学 牙科 搪瓷漆 放射科
作者
Hassan Salehi,Nima Karimian,Mina Mahdian,Hisham Alnajjar,Aditya Tadinada
标识
DOI:10.1117/12.2291088
摘要

Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的老六完成签到,获得积分10
刚刚
协和_子鱼完成签到,获得积分0
刚刚
1秒前
Hyde完成签到,获得积分10
2秒前
小南孩完成签到,获得积分10
2秒前
2秒前
3秒前
研友_VZG7GZ应助keyancui采纳,获得10
3秒前
康康完成签到 ,获得积分10
4秒前
英姑应助毕业就好采纳,获得10
4秒前
虚心的迎荷完成签到,获得积分10
4秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
4秒前
4秒前
祝雲完成签到,获得积分10
4秒前
新的心跳发布了新的文献求助10
4秒前
壹拾柒完成签到,获得积分10
5秒前
5秒前
5秒前
mimi发布了新的文献求助10
5秒前
呆呆完成签到,获得积分10
6秒前
blebui应助姜茶采纳,获得10
6秒前
幼稚园小新完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
7秒前
snowball完成签到,获得积分10
7秒前
8秒前
duoduozs发布了新的文献求助10
8秒前
velpro完成签到,获得积分10
8秒前
qqqq完成签到,获得积分10
8秒前
9秒前
9秒前
溪风完成签到,获得积分10
9秒前
ting发布了新的文献求助10
10秒前
11秒前
Xxxnnian发布了新的文献求助30
11秒前
听风暖完成签到 ,获得积分10
12秒前
li发布了新的文献求助10
12秒前
赘婿应助伊布采纳,获得10
12秒前
gaga完成签到,获得积分10
12秒前
小蘑菇应助reck采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672