Deep learning classifier with optical coherence tomography images for early dental caries detection

光学相干层析成像 Softmax函数 人工智能 卷积神经网络 计算机科学 脱盐 分类器(UML) 深度学习 模式识别(心理学) 医学 牙科 搪瓷漆 放射科
作者
Hassan Salehi,Nima Karimian,Mina Mahdian,Hisham Alnajjar,Aditya Tadinada
标识
DOI:10.1117/12.2291088
摘要

Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Runostp发布了新的文献求助10
刚刚
刚刚
JamesPei应助姜丝罐罐n采纳,获得10
刚刚
1秒前
简单书白发布了新的文献求助10
2秒前
2秒前
37星河75发布了新的文献求助10
2秒前
2秒前
李子完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Owen应助倪小采纳,获得30
3秒前
xxxllllll发布了新的文献求助10
3秒前
Micheal发布了新的文献求助10
3秒前
4秒前
852应助milkmore采纳,获得10
4秒前
4秒前
4秒前
22发布了新的文献求助10
5秒前
热心白枫发布了新的文献求助10
5秒前
soil发布了新的文献求助10
5秒前
wu发布了新的文献求助10
5秒前
5秒前
5秒前
辛勤秋双完成签到,获得积分10
5秒前
华仔应助温大全采纳,获得10
5秒前
Owen应助常馨月采纳,获得10
6秒前
6秒前
2011509382完成签到,获得积分10
7秒前
xpeng发布了新的文献求助10
7秒前
文艺哈密瓜完成签到,获得积分10
7秒前
7秒前
Su发布了新的文献求助10
8秒前
stefanie发布了新的文献求助10
8秒前
zh完成签到,获得积分10
8秒前
8秒前
烦烦烦发布了新的文献求助10
9秒前
9秒前
汉堡包应助祁岳颐采纳,获得10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498