亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning classifier with optical coherence tomography images for early dental caries detection

光学相干层析成像 Softmax函数 人工智能 卷积神经网络 计算机科学 脱盐 分类器(UML) 深度学习 模式识别(心理学) 医学 牙科 搪瓷漆 放射科
作者
Hassan Salehi,Nima Karimian,Mina Mahdian,Hisham Alnajjar,Aditya Tadinada
标识
DOI:10.1117/12.2291088
摘要

Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自己发布了新的文献求助10
刚刚
4秒前
closer发布了新的文献求助10
6秒前
传奇3应助自己采纳,获得10
32秒前
closer完成签到,获得积分10
41秒前
某某某完成签到,获得积分10
43秒前
自己完成签到,获得积分10
43秒前
1分钟前
1分钟前
1分钟前
lovelife发布了新的文献求助10
1分钟前
1分钟前
聪明的云完成签到 ,获得积分10
1分钟前
阿泽完成签到 ,获得积分10
1分钟前
1分钟前
张泽崇发布了新的文献求助10
2分钟前
1206425219密完成签到,获得积分10
2分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
3分钟前
Aliothae完成签到,获得积分20
3分钟前
科研通AI5应助929采纳,获得10
3分钟前
HLT完成签到 ,获得积分10
3分钟前
4分钟前
小秋发布了新的文献求助10
4分钟前
CC完成签到,获得积分0
4分钟前
4分钟前
4分钟前
4分钟前
Jero21发布了新的文献求助10
5分钟前
小秋完成签到,获得积分10
5分钟前
Jero21完成签到,获得积分20
5分钟前
5分钟前
5分钟前
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
GIA完成签到,获得积分10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216