Deep learning classifier with optical coherence tomography images for early dental caries detection

光学相干层析成像 Softmax函数 人工智能 卷积神经网络 计算机科学 脱盐 分类器(UML) 深度学习 模式识别(心理学) 医学 牙科 搪瓷漆 放射科
作者
Hassan Salehi,Nima Karimian,Mina Mahdian,Hisham Alnajjar,Aditya Tadinada
标识
DOI:10.1117/12.2291088
摘要

Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_nVNBVn发布了新的文献求助30
1秒前
BYN完成签到 ,获得积分10
1秒前
维生素完成签到 ,获得积分10
2秒前
沐沐汐完成签到 ,获得积分10
2秒前
俭朴从安完成签到,获得积分10
2秒前
xuebinxu完成签到 ,获得积分20
2秒前
无限师完成签到,获得积分10
2秒前
可可完成签到,获得积分10
3秒前
延陵君完成签到,获得积分0
3秒前
SciGPT应助听风雨采纳,获得10
4秒前
活力沧海完成签到,获得积分10
5秒前
_Forelsket_完成签到,获得积分10
5秒前
5秒前
mxtsusan完成签到,获得积分10
5秒前
6秒前
coollzl完成签到 ,获得积分10
6秒前
牛马完成签到,获得积分10
7秒前
Cloudyyy完成签到,获得积分10
7秒前
7秒前
司马绮山完成签到,获得积分10
7秒前
huihui265发布了新的文献求助10
7秒前
8秒前
puzhongjiMiQ完成签到,获得积分10
8秒前
比格大王完成签到 ,获得积分10
10秒前
卿卿完成签到 ,获得积分10
10秒前
10秒前
夏艳平完成签到 ,获得积分10
10秒前
puzhongjiMiQ发布了新的文献求助10
10秒前
caopeili完成签到 ,获得积分10
10秒前
Cloudyyy发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
菠萝汁完成签到,获得积分10
11秒前
zpl完成签到 ,获得积分10
12秒前
12秒前
ww完成签到,获得积分10
13秒前
amber完成签到,获得积分10
13秒前
biofresh完成签到,获得积分10
13秒前
DODO完成签到,获得积分10
13秒前
orixero应助舒心访文采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036