海马体
H&E染色
医学
海马结构
移植
病理
染色
内科学
作者
Enzhi Yin,Masateru Uchiyama,Xiangyuan Jin,Kento Kawai,Masaki Takao,Masanori Niimi
标识
DOI:10.1016/j.transproceed.2018.03.107
摘要
The hippocampus is a brain structure that plays a fundamental role in memory and learning. Many animal studies have demonstrated that the structure of the hippocampus has evolved through exercise and play. However, little is known on the relationship between the brain and immunological reaction. In this study, we investigated the correlation between the weight of the hippocampus and transplant immunology in a murine heart transplant model. Fully vascularized heterotopic hearts from CBA (H2k, allogeneic group) or C57BL/6 (H2b, syngeneic group) donors were transplanted into C57BL/6 recipients by using microsurgical techniques. The weights of the whole brain and hippocampus from syngeneic and allogeneic groups were recorded 1, 2, and 4 weeks after grafting, and histologic assessments were performed. The syngeneic group maintained beating cardiac grafts for over 30 days, but the allogeneic group rejected CBA cardiac allografts acutely within 8 days. The average weight of whole brain from syngeneic and allogeneic group 1, 2, and 4 weeks had no significant differences. However, the average weight of hippocampus at 2 and 4 weeks was considerably increased in the allogeneic group compared with the syngeneic group. Histologic assessments with hematoxylin-eosin and Kluver-Barrera staining of hippocampus from allogeneic group 1 week after grafting demonstrated a greater number of granule and pyramidal cells in the hippocampus. Alloimmune responses in our model increase the weight of hippocampus.
科研通智能强力驱动
Strongly Powered by AbleSci AI