Interleaved 3D‐CNNs for joint segmentation of small‐volume structures in head and neck CT images

分割 计算机科学 人工智能 卷积神经网络 Sørensen–骰子系数 体素 豪斯多夫距离 模式识别(心理学) 计算机视觉 医学影像学 图像分割 头颈部 医学 外科
作者
Xuhua Ren,Lei Xiang,Dong Nie,Yeqin Shao,Huan Zhang,Dinggang Shen,Qian Wang
出处
期刊:Medical Physics [Wiley]
卷期号:45 (5): 2063-2075 被引量:143
标识
DOI:10.1002/mp.12837
摘要

Accurate 3D image segmentation is a crucial step in radiation therapy planning of head and neck tumors. These segmentation results are currently obtained by manual outlining of tissues, which is a tedious and time-consuming procedure. Automatic segmentation provides an alternative solution, which, however, is often difficult for small tissues (i.e., chiasm and optic nerves in head and neck CT images) because of their small volumes and highly diverse appearance/shape information. In this work, we propose to interleave multiple 3D Convolutional Neural Networks (3D-CNNs) to attain automatic segmentation of small tissues in head and neck CT images.A 3D-CNN was designed to segment each structure of interest. To make full use of the image appearance information, multiscale patches are extracted to describe the center voxel under consideration and then input to the CNN architecture. Next, as neighboring tissues are often highly related in the physiological and anatomical perspectives, we interleave the CNNs designated for the individual tissues. In this way, the tentative segmentation result of a specific tissue can contribute to refine the segmentations of other neighboring tissues. Finally, as more CNNs are interleaved and cascaded, a complex network of CNNs can be derived, such that all tissues can be jointly segmented and iteratively refined.Our method was validated on a set of 48 CT images, obtained from the Medical Image Computing and Computer Assisted Intervention (MICCAI) Challenge 2015. The Dice coefficient (DC) and the 95% Hausdorff Distance (95HD) are computed to measure the accuracy of the segmentation results. The proposed method achieves higher segmentation accuracy (with the average DC: 0.58 ± 0.17 for optic chiasm, and 0.71 ± 0.08 for optic nerve; 95HD: 2.81 ± 1.56 mm for optic chiasm, and 2.23 ± 0.90 mm for optic nerve) than the MICCAI challenge winner (with the average DC: 0.38 for optic chiasm, and 0.68 for optic nerve; 95HD: 3.48 for optic chiasm, and 2.48 for optic nerve).An accurate and automatic segmentation method has been proposed for small tissues in head and neck CT images, which is important for the planning of radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路宝发布了新的文献求助10
2秒前
Yzh发布了新的文献求助10
2秒前
SciGPT应助VERY采纳,获得10
3秒前
寒冷忆山完成签到,获得积分10
4秒前
4秒前
4秒前
英姑应助mym采纳,获得10
5秒前
6秒前
华仔应助淡然可燕采纳,获得10
6秒前
思源应助zyyin采纳,获得30
7秒前
9秒前
罗小小发布了新的文献求助10
9秒前
古的古的应助吴晨曦采纳,获得10
9秒前
彭凯发布了新的文献求助10
9秒前
jwj发布了新的文献求助10
11秒前
13秒前
13秒前
Andorchid发布了新的文献求助10
15秒前
消逝发布了新的文献求助10
15秒前
15秒前
16秒前
renxuda完成签到,获得积分10
16秒前
隐形曼青应助念头采纳,获得10
16秒前
小马甲应助念头采纳,获得10
16秒前
CipherSage应助念头采纳,获得10
16秒前
Ava应助念头采纳,获得10
16秒前
16秒前
汉堡包应助念头采纳,获得10
16秒前
NexusExplorer应助念头采纳,获得10
16秒前
无花果应助念头采纳,获得10
16秒前
丘比特应助念头采纳,获得10
16秒前
打打应助念头采纳,获得10
16秒前
搜集达人应助念头采纳,获得10
16秒前
鸩九发布了新的文献求助10
17秒前
CipherSage应助彭凯采纳,获得10
17秒前
20秒前
VERY发布了新的文献求助10
21秒前
mym发布了新的文献求助10
22秒前
ringo完成签到,获得积分10
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443563
求助须知:如何正确求助?哪些是违规求助? 3039816
关于积分的说明 8978149
捐赠科研通 2728242
什么是DOI,文献DOI怎么找? 1496456
科研通“疑难数据库(出版商)”最低求助积分说明 691594
邀请新用户注册赠送积分活动 689113