亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-class Alzheimer's disease classification using image and clinical features

模式识别(心理学) 人工智能 计算机科学 局部二进制模式 支持向量机 直方图 认知障碍 痴呆 灰质 白质 磁共振成像 图像(数学) 疾病 医学 病理 放射科
作者
Tooba Altaf,Syed Muhammad Anwar,Nadia Gul,Muhammad Nadeem Majeed,Muhammad Majid
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:43: 64-74 被引量:119
标识
DOI:10.1016/j.bspc.2018.02.019
摘要

Alzheimer's disease (AD) is the most common form of dementia, which results in memory related issues in subjects. An accurate detection and classification of AD alongside its prodromal stage i.e., mild cognitive impairment (MCI) is of great clinical importance. In this paper, an Alzheimer detection and classification algorithm is presented. The bag of visual word approach is used to improve the effectiveness of texture based features, such as gray level co-occurrence matrix (GLCM), scale invariant feature transform, local binary pattern and histogram of gradient. The importance of clinical data provided alongside the imaging data is highlighted by incorporating clinical features with texture based features to generate a hybrid feature vector. The features are extracted from whole as well as segmented regions of magnetic resonance (MR) brain images representing grey matter, white matter and cerebrospinal fluid. The proposed algorithm is validated using the Alzheimer's disease neuro-imaging initiative dataset (ADNI), where images are classified into one of the three classes namely, AD, normal, and MCI. The proposed algorithm outperforms state-of-the-art techniques in key evaluation parameters including accuracy, sensitivity, and specificity. An accuracy of 98.4% is achieved for binary classification of AD and normal class. For multi-class classification of AD, normal and MCI, an accuracy of 79.8% is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
10秒前
10秒前
13秒前
15秒前
嗯哼完成签到,获得积分0
24秒前
潇潇完成签到 ,获得积分10
27秒前
44秒前
gy发布了新的文献求助10
48秒前
51秒前
52秒前
耍酷灵珊发布了新的文献求助10
57秒前
呀!我可以的完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
耍酷灵珊完成签到,获得积分10
1分钟前
ZQM发布了新的文献求助10
1分钟前
香蕉觅云应助waleedo2020采纳,获得30
1分钟前
Otter完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
爆米花应助骆十八采纳,获得10
2分钟前
2分钟前
waleedo2020发布了新的文献求助30
2分钟前
2分钟前
3分钟前
缥缈嫣发布了新的文献求助10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
骆十八发布了新的文献求助10
4分钟前
骆十八完成签到,获得积分10
4分钟前
4分钟前
朴实初夏完成签到 ,获得积分10
4分钟前
4分钟前
Krim完成签到 ,获得积分10
4分钟前
POWER完成签到,获得积分10
4分钟前
LL完成签到,获得积分10
4分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311153
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516704
捐赠科研通 2619261
什么是DOI,文献DOI怎么找? 1432183
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810