清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-class Alzheimer's disease classification using image and clinical features

模式识别(心理学) 人工智能 计算机科学 局部二进制模式 支持向量机 直方图 认知障碍 痴呆 灰质 白质 磁共振成像 图像(数学) 疾病 医学 病理 放射科
作者
Tooba Altaf,Syed Muhammad Anwar,Nadia Gul,Muhammad Nadeem Majeed,Muhammad Majid
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:43: 64-74 被引量:154
标识
DOI:10.1016/j.bspc.2018.02.019
摘要

Alzheimer's disease (AD) is the most common form of dementia, which results in memory related issues in subjects. An accurate detection and classification of AD alongside its prodromal stage i.e., mild cognitive impairment (MCI) is of great clinical importance. In this paper, an Alzheimer detection and classification algorithm is presented. The bag of visual word approach is used to improve the effectiveness of texture based features, such as gray level co-occurrence matrix (GLCM), scale invariant feature transform, local binary pattern and histogram of gradient. The importance of clinical data provided alongside the imaging data is highlighted by incorporating clinical features with texture based features to generate a hybrid feature vector. The features are extracted from whole as well as segmented regions of magnetic resonance (MR) brain images representing grey matter, white matter and cerebrospinal fluid. The proposed algorithm is validated using the Alzheimer's disease neuro-imaging initiative dataset (ADNI), where images are classified into one of the three classes namely, AD, normal, and MCI. The proposed algorithm outperforms state-of-the-art techniques in key evaluation parameters including accuracy, sensitivity, and specificity. An accuracy of 98.4% is achieved for binary classification of AD and normal class. For multi-class classification of AD, normal and MCI, an accuracy of 79.8% is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
monica发布了新的文献求助10
37秒前
CodeCraft应助monica采纳,获得10
50秒前
wlscj应助科研通管家采纳,获得20
1分钟前
科研通AI6应助zzx采纳,获得10
1分钟前
搜集达人应助elizabeth339采纳,获得50
2分钟前
Perry完成签到,获得积分10
2分钟前
2分钟前
monica发布了新的文献求助10
2分钟前
nbing发布了新的文献求助10
2分钟前
2分钟前
nbing完成签到,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
3分钟前
elizabeth339发布了新的文献求助50
3分钟前
Axel完成签到,获得积分10
3分钟前
wlscj应助科研通管家采纳,获得20
3分钟前
Kkk118完成签到,获得积分10
3分钟前
zzx发布了新的文献求助10
3分钟前
cheeries完成签到 ,获得积分10
4分钟前
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
tishe7发布了新的文献求助10
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
magictoo完成签到,获得积分10
6分钟前
随心所欲完成签到 ,获得积分10
6分钟前
Demi_Ming完成签到,获得积分10
6分钟前
wlscj应助科研通管家采纳,获得20
7分钟前
Lucas应助5430采纳,获得10
7分钟前
shame完成签到 ,获得积分10
7分钟前
7分钟前
5430发布了新的文献求助10
8分钟前
5430完成签到,获得积分10
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
wlscj应助科研通管家采纳,获得38
9分钟前
QCB完成签到 ,获得积分10
10分钟前
激动的似狮完成签到,获得积分10
10分钟前
千里草完成签到,获得积分10
10分钟前
李爱国应助Lz采纳,获得10
11分钟前
常有李完成签到,获得积分10
11分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233614
求助须知:如何正确求助?哪些是违规求助? 4402476
关于积分的说明 13700042
捐赠科研通 4269273
什么是DOI,文献DOI怎么找? 2343029
邀请新用户注册赠送积分活动 1340062
关于科研通互助平台的介绍 1297074