Multi-class Alzheimer's disease classification using image and clinical features

模式识别(心理学) 人工智能 计算机科学 局部二进制模式 支持向量机 直方图 认知障碍 痴呆 灰质 白质 磁共振成像 图像(数学) 疾病 医学 病理 放射科
作者
Tooba Altaf,Syed Muhammad Anwar,Nadia Gul,Muhammad Nadeem Majeed,Muhammad Majid
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:43: 64-74 被引量:154
标识
DOI:10.1016/j.bspc.2018.02.019
摘要

Alzheimer's disease (AD) is the most common form of dementia, which results in memory related issues in subjects. An accurate detection and classification of AD alongside its prodromal stage i.e., mild cognitive impairment (MCI) is of great clinical importance. In this paper, an Alzheimer detection and classification algorithm is presented. The bag of visual word approach is used to improve the effectiveness of texture based features, such as gray level co-occurrence matrix (GLCM), scale invariant feature transform, local binary pattern and histogram of gradient. The importance of clinical data provided alongside the imaging data is highlighted by incorporating clinical features with texture based features to generate a hybrid feature vector. The features are extracted from whole as well as segmented regions of magnetic resonance (MR) brain images representing grey matter, white matter and cerebrospinal fluid. The proposed algorithm is validated using the Alzheimer's disease neuro-imaging initiative dataset (ADNI), where images are classified into one of the three classes namely, AD, normal, and MCI. The proposed algorithm outperforms state-of-the-art techniques in key evaluation parameters including accuracy, sensitivity, and specificity. An accuracy of 98.4% is achieved for binary classification of AD and normal class. For multi-class classification of AD, normal and MCI, an accuracy of 79.8% is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助渭水飞熊采纳,获得30
2秒前
7秒前
专注的念桃完成签到,获得积分10
9秒前
风趣的芒果完成签到,获得积分10
9秒前
13秒前
c1302128340完成签到,获得积分10
15秒前
JamesPei应助忐忑的红牛采纳,获得10
17秒前
大个应助Tsuki采纳,获得10
17秒前
DoctorXu完成签到,获得积分10
18秒前
嘻嘻完成签到,获得积分10
20秒前
Garnieta完成签到,获得积分10
21秒前
活力白亦完成签到 ,获得积分10
22秒前
Cwin完成签到,获得积分10
22秒前
23秒前
酷酷的麦片完成签到,获得积分10
23秒前
24秒前
科研通AI6应助令宏采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
27秒前
英吉利25发布了新的文献求助30
28秒前
29秒前
kingwill应助心灵美的不愁采纳,获得20
31秒前
31秒前
33秒前
34秒前
赘婿应助pangkuan采纳,获得10
36秒前
jiajx21发布了新的文献求助10
36秒前
37秒前
liuzy完成签到,获得积分10
37秒前
chris完成签到,获得积分10
40秒前
心灵美的不愁给心灵美的不愁的求助进行了留言
41秒前
田様应助鱼子不吃饭采纳,获得10
41秒前
novQ发布了新的文献求助10
42秒前
烟花应助norville采纳,获得10
44秒前
44秒前
agnes完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563647
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685308
捐赠科研通 4590492
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478