Multi-class Alzheimer's disease classification using image and clinical features

模式识别(心理学) 人工智能 计算机科学 局部二进制模式 支持向量机 直方图 认知障碍 痴呆 灰质 白质 磁共振成像 图像(数学) 疾病 医学 病理 放射科
作者
Tooba Altaf,Syed Muhammad Anwar,Nadia Gul,Muhammad Nadeem Majeed,Muhammad Majid
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:43: 64-74 被引量:119
标识
DOI:10.1016/j.bspc.2018.02.019
摘要

Alzheimer's disease (AD) is the most common form of dementia, which results in memory related issues in subjects. An accurate detection and classification of AD alongside its prodromal stage i.e., mild cognitive impairment (MCI) is of great clinical importance. In this paper, an Alzheimer detection and classification algorithm is presented. The bag of visual word approach is used to improve the effectiveness of texture based features, such as gray level co-occurrence matrix (GLCM), scale invariant feature transform, local binary pattern and histogram of gradient. The importance of clinical data provided alongside the imaging data is highlighted by incorporating clinical features with texture based features to generate a hybrid feature vector. The features are extracted from whole as well as segmented regions of magnetic resonance (MR) brain images representing grey matter, white matter and cerebrospinal fluid. The proposed algorithm is validated using the Alzheimer's disease neuro-imaging initiative dataset (ADNI), where images are classified into one of the three classes namely, AD, normal, and MCI. The proposed algorithm outperforms state-of-the-art techniques in key evaluation parameters including accuracy, sensitivity, and specificity. An accuracy of 98.4% is achieved for binary classification of AD and normal class. For multi-class classification of AD, normal and MCI, an accuracy of 79.8% is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱大悦城完成签到,获得积分10
刚刚
双丁宝贝发布了新的文献求助10
刚刚
刚刚
刚刚
2秒前
3秒前
SOESAN发布了新的文献求助10
3秒前
4秒前
科目三应助源于期待采纳,获得10
6秒前
nano发布了新的文献求助20
7秒前
xiaohong发布了新的文献求助10
9秒前
领导范儿应助橘子味棒冰采纳,获得10
9秒前
10秒前
脑洞疼应助YoursSummer采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
兮兮完成签到,获得积分10
14秒前
xiaohong完成签到,获得积分10
14秒前
14秒前
siyuwang1234发布了新的文献求助10
14秒前
15秒前
Jessie发布了新的文献求助10
15秒前
16秒前
赘婿应助dmj采纳,获得10
17秒前
Jasper应助萌酱采纳,获得10
17秒前
单薄的果汁完成签到,获得积分10
18秒前
源于期待发布了新的文献求助10
19秒前
BANG发布了新的文献求助10
20秒前
金滢发布了新的文献求助10
20秒前
tls发布了新的文献求助10
25秒前
26秒前
27秒前
万能图书馆应助QiiiMengfan采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
源于期待完成签到,获得积分10
30秒前
30秒前
包远锋完成签到,获得积分10
31秒前
tls关闭了tls文献求助
32秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182