亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid correlation analysis with application to imaging genetics

距离相关 相关性 皮尔逊积矩相关系数 典型相关 体素 重采样 模式识别(心理学) 人工智能 协方差矩阵 计算机科学 感兴趣区域 统计 数学 协方差 核(代数) 组合数学 几何学
作者
Jian Fang,Wenxing Hu,Vince D. Calhoun,Yu‐Ping Wang
标识
DOI:10.1117/12.2293556
摘要

Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
李健的小迷弟应助DJ国采纳,获得10
12秒前
扯不开的封口膜完成签到,获得积分10
18秒前
22秒前
27秒前
DJ国发布了新的文献求助10
29秒前
小马甲应助朝夕采纳,获得10
34秒前
靳言发布了新的文献求助10
39秒前
41秒前
bkagyin应助科研通管家采纳,获得10
41秒前
xjcy应助科研通管家采纳,获得10
41秒前
我是老大应助科研通管家采纳,获得10
41秒前
朝夕发布了新的文献求助10
46秒前
48秒前
靳言完成签到,获得积分20
49秒前
50秒前
janejane发布了新的文献求助10
54秒前
月亮完成签到 ,获得积分10
54秒前
彭于彦祖应助靳言采纳,获得30
59秒前
张姐完成签到,获得积分10
1分钟前
古今奇观完成签到 ,获得积分10
1分钟前
1分钟前
janejane完成签到 ,获得积分20
1分钟前
蓝色的多崎作完成签到,获得积分10
1分钟前
慕青应助精明的芷蕾采纳,获得10
1分钟前
1分钟前
大气如曼发布了新的文献求助10
2分钟前
niuniu发布了新的文献求助10
2分钟前
852应助niuniu采纳,获得10
2分钟前
战神林北完成签到,获得积分10
2分钟前
2分钟前
3分钟前
钱念波完成签到 ,获得积分10
3分钟前
Haiverxin发布了新的文献求助50
3分钟前
科研通AI2S应助Gryphon采纳,获得10
3分钟前
浪里白条发布了新的文献求助10
3分钟前
Haiverxin完成签到,获得积分10
3分钟前
无花果应助Daniel采纳,获得10
4分钟前
4分钟前
mimimi完成签到,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298669
求助须知:如何正确求助?哪些是违规求助? 2933733
关于积分的说明 8464668
捐赠科研通 2606759
什么是DOI,文献DOI怎么找? 1423424
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645126