A hybrid correlation analysis with application to imaging genetics

距离相关 相关性 皮尔逊积矩相关系数 典型相关 体素 重采样 模式识别(心理学) 人工智能 协方差矩阵 计算机科学 感兴趣区域 统计 数学 协方差 核(代数) 组合数学 几何学
作者
Jian Fang,Wenxing Hu,Vince D. Calhoun,Yu‐Ping Wang
标识
DOI:10.1117/12.2293556
摘要

Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yx应助陈强采纳,获得30
刚刚
sokach发布了新的文献求助10
2秒前
缓慢荔枝发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
天御雪完成签到,获得积分10
3秒前
gen关闭了gen文献求助
3秒前
3秒前
科研通AI5应助oldlee采纳,获得10
4秒前
4秒前
MADKAI发布了新的文献求助10
4秒前
哈哈悦完成签到,获得积分10
4秒前
赘婿应助duoduozs采纳,获得10
4秒前
kai完成签到,获得积分10
5秒前
5秒前
情怀应助xhy采纳,获得10
5秒前
整齐的灭绝完成签到 ,获得积分10
6秒前
充电宝应助船舵采纳,获得10
6秒前
lqphysics完成签到,获得积分10
6秒前
6秒前
小小完成签到 ,获得积分10
7秒前
320me666完成签到,获得积分10
8秒前
8秒前
velpro发布了新的文献求助10
9秒前
科研通AI5应助masu采纳,获得10
9秒前
小狸跟你拼啦完成签到,获得积分10
9秒前
寂寞的灵发布了新的文献求助10
9秒前
10秒前
honey完成签到,获得积分10
10秒前
白宝宝北北白应助eee采纳,获得10
10秒前
gcc应助HZW采纳,获得20
11秒前
11秒前
完美世界应助Hu111采纳,获得10
12秒前
khaosyi完成签到 ,获得积分10
13秒前
哇哈哈完成签到,获得积分10
14秒前
14秒前
buno应助啦啦采纳,获得10
15秒前
Mike完成签到,获得积分10
15秒前
15秒前
顾矜应助chen采纳,获得10
16秒前
科研通AI5应助小王采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672