A hybrid correlation analysis with application to imaging genetics

距离相关 相关性 皮尔逊积矩相关系数 典型相关 体素 重采样 模式识别(心理学) 人工智能 协方差矩阵 计算机科学 感兴趣区域 统计 数学 协方差 核(代数) 组合数学 几何学
作者
Jian Fang,Wenxing Hu,Vince D. Calhoun,Yu‐Ping Wang
标识
DOI:10.1117/12.2293556
摘要

Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lewe发布了新的文献求助10
2秒前
香蕉觅云应助Awojiuzheyang采纳,获得10
2秒前
2秒前
爆米花应助辛勤夜柳采纳,获得10
2秒前
陈茜应助西西采纳,获得10
3秒前
3秒前
情怀应助axn采纳,获得10
4秒前
淡水痕发布了新的文献求助10
4秒前
hunbaekkkkk发布了新的文献求助10
4秒前
踏实万天发布了新的文献求助10
5秒前
goth发布了新的文献求助10
5秒前
slx完成签到,获得积分10
5秒前
6秒前
可爱的函函应助王崇然采纳,获得10
7秒前
星星完成签到,获得积分10
7秒前
谦让汲完成签到,获得积分10
7秒前
搜集达人应助Ing采纳,获得10
7秒前
忍冬发布了新的文献求助20
7秒前
清辉夜凝发布了新的文献求助10
8秒前
搜集达人应助清水胖子采纳,获得30
8秒前
9秒前
memedaaaah发布了新的文献求助10
9秒前
10秒前
Orange应助萝卜筐采纳,获得10
10秒前
lewe完成签到,获得积分10
11秒前
12秒前
香蕉觅云应助Ing采纳,获得10
12秒前
36038138完成签到 ,获得积分10
12秒前
13秒前
stefan发布了新的文献求助10
14秒前
潇洒面包完成签到,获得积分10
14秒前
英俊的铭应助leez采纳,获得10
15秒前
辛勤夜柳发布了新的文献求助10
15秒前
俭朴的宛完成签到 ,获得积分10
15秒前
细腻冬日完成签到,获得积分10
15秒前
策略发布了新的文献求助10
15秒前
16秒前
Docgyj完成签到 ,获得积分0
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202