A hybrid correlation analysis with application to imaging genetics

距离相关 相关性 皮尔逊积矩相关系数 典型相关 体素 重采样 模式识别(心理学) 人工智能 协方差矩阵 计算机科学 感兴趣区域 统计 数学 协方差 核(代数) 组合数学 几何学
作者
Jian Fang,Wenxing Hu,Vince D. Calhoun,Yu‐Ping Wang
标识
DOI:10.1117/12.2293556
摘要

Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
隐形曼青应助李杍木采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
高文雅发布了新的文献求助10
3秒前
moonbeam完成签到,获得积分10
4秒前
唐唐发布了新的文献求助10
4秒前
4秒前
贿猫完成签到,获得积分20
4秒前
5秒前
嘻嘻嘻完成签到,获得积分10
6秒前
景三完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
饭团发布了新的文献求助10
8秒前
Lucas应助duoduo采纳,获得10
8秒前
木易心完成签到,获得积分10
8秒前
Ycx完成签到,获得积分10
9秒前
hhh发布了新的文献求助10
9秒前
cinq001完成签到,获得积分20
9秒前
学海无涯完成签到,获得积分10
9秒前
www发布了新的文献求助10
9秒前
9秒前
smottom应助健康好运和采纳,获得10
10秒前
djiwisksk66应助健康好运和采纳,获得10
10秒前
10秒前
香蕉觅云应助一只猫猫头采纳,获得10
10秒前
小新完成签到,获得积分10
11秒前
Giroro_roro完成签到,获得积分10
11秒前
Owen应助落后的哈密瓜采纳,获得10
12秒前
香蕉觅云应助Mister.WangK采纳,获得10
12秒前
胃小凹发布了新的文献求助10
12秒前
yinggill发布了新的文献求助10
14秒前
noss发布了新的文献求助10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004