A hybrid correlation analysis with application to imaging genetics

距离相关 相关性 皮尔逊积矩相关系数 典型相关 体素 重采样 模式识别(心理学) 人工智能 协方差矩阵 计算机科学 感兴趣区域 统计 数学 协方差 核(代数) 组合数学 几何学
作者
Jian Fang,Wenxing Hu,Vince D. Calhoun,Yu‐Ping Wang
标识
DOI:10.1117/12.2293556
摘要

Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淼队完成签到,获得积分10
1秒前
1秒前
落叶解三秋完成签到,获得积分10
2秒前
Crystal完成签到 ,获得积分10
5秒前
小小酥完成签到,获得积分10
5秒前
等待蚂蚁完成签到 ,获得积分10
6秒前
zgt01发布了新的文献求助10
6秒前
心心完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
8秒前
温超完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
Menta1y完成签到,获得积分10
10秒前
czzlancer完成签到,获得积分10
11秒前
汶溢完成签到,获得积分10
11秒前
xsss完成签到,获得积分10
12秒前
TAN完成签到,获得积分10
12秒前
通通通发布了新的文献求助10
13秒前
liudw完成签到,获得积分10
13秒前
丹丹子完成签到 ,获得积分10
14秒前
时光完成签到,获得积分10
14秒前
15秒前
充电宝应助vsvsgo采纳,获得10
17秒前
123完成签到 ,获得积分10
19秒前
Ammr完成签到 ,获得积分10
19秒前
无限的依波完成签到,获得积分10
19秒前
姽婳wy发布了新的文献求助10
20秒前
lemon完成签到,获得积分10
20秒前
传奇3应助duckspy采纳,获得30
21秒前
陈木木完成签到,获得积分10
22秒前
可可西里完成签到,获得积分10
23秒前
奋斗蜗牛完成签到,获得积分10
23秒前
CipherSage应助眼睛大的擎苍采纳,获得10
23秒前
打打应助小小酥采纳,获得10
24秒前
fox完成签到 ,获得积分10
24秒前
僦是卜够完成签到 ,获得积分10
25秒前
小马甲应助嘉梦采纳,获得10
28秒前
qiqi完成签到,获得积分10
29秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022