亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of an in-vivo platform to evaluate the PK-PD relationship of an anti-PD-L1 mAb in a syngeneic mouse model of melanoma

黑色素瘤 免疫疗法 医学 达卡巴嗪 癌症免疫疗法 单克隆抗体 免疫系统 免疫检查点 癌症研究 癌症 免疫学 药理学 抗体 内科学
作者
Anthony Contreras
链接
摘要

Cancer immunotherapy represents one of the most recent research fields to develop new treatment strategies and attain the cure of this disease. The understanding of tumor immunology has highlighted the role of the immune system in controlling tumor proliferation and hence, its potential as therapeutic target. On that matter, immunotherapy has changed the landscape for the treatment of melanoma. Over the last 30 years, dacarbazine and interleukin-2 were the standard care treatments for this cancer, with low response rate and some life threatening adverse effects. Nowadays, there are eight new immunotherapy molecules approved by the FDA for melanoma treatment, including the checkpoint inhibitor monoclonal antibodies (mAb) targeted to the PD-1/PD-L1 axis (anti-PD-1.PD-L1). Immune checkpoint pathways are involved in mechanisms of tumor resistance due to their capability to down-regulate T cell activity and induce lymphocyte death. Hence, the development of checkpoint inhibitor agents is of particular interest. These therapeutic molecules are able to promote and reestablish innate and adaptive immune effector mechanisms in order to neutralize the tumor immune scape, leading to an enhanced anti-tumor immune response. Besides, demonstrated features such as durable efficacy associated with extended survival, and considerable low toxicity profile, have taken these new mAbs to breakthrough development and accelerated approval as first-line treatment for melanoma patients. In order to improve clinical outcomes for patients, the pharmacokinetics (PK) and pharmacodynamics (PD) characterization of anti-PD-1/PD-L1 mAbs, may help to establish adequate dose-regimens and to identify those biomarkers associated with PD to select as early as possible the patients who benefit from these therapies. In this regard, a pre-clinical platform was developed in the present work in order to explore, evaluate and characterize the PD and the PK-PD relationship of an anti-PD-L1 mAb, using a syngeneic mouse model of melanoma with B16-OVA cells. In-vitro results have demonstrated that anti-PD-L1 mAb was bound specifically to PD-L1. This was compatible with a mechanism of ligand blockage by the mAb at the cell surface, followed by the internalization of the ligand-mAb complex. Thus, anti-PD-L1 mAb exerted a specific effect over PD-L1 cellular availability, down-regulating the ligand turnover with dependence of the exposure time and mAb concentration. Additionally, anti-tumor capability and increased survival were observed on B16-OVA tumor bearing mice after anti-PD-L1 therapy, with independence of the initial tumor size. Besides, there was no clear dose dependence for the anti-tumor effect, although antibody tumor levels showed a linear dose-concentration relationship. The tumor immune response triggered by anti-PD-L1 mAb led to a rapid tumor lymphocytic infiltration characterized by an increment of tumor specific CD8+ (OVA-CD8+) lymphocytes, suggesting an enhanced intra-tumor immune response. In fact, the time profile of OVA-CD8+ response followed the same profiles as mAb tumor concentrations, and peripheral blood lymphocytes (PBLs). These results suggest that PBLs might be a possible biomarker of anti-PD-L1 mAb therapeutic activity. Finally, an overall integration of in-vitro and in-vivo findings allowed the development of a PK-PD model in order to describe the relationship between anti-PD-L1 mAb concentrations and drug effect. This model, based on Simeoni’s tumor growth model, describes the drug effect throughout a delay compartment that may be associated with the ligand-mAb binding and the process of complex internalization. Moreover, this anti-tumor mechanism provided by the drug was combined with another based on the ability of the tumor itself to regulate the inhibition of tumor cells proliferation. Therefore, it can be concluded that anti-PD-L1 mAb was able to induce the anti-tumor effect by activating the immune response at the target tissue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
42秒前
gszy1975发布了新的文献求助10
52秒前
53秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
CipherSage应助难过的踏歌采纳,获得10
1分钟前
1分钟前
MYYYZ发布了新的文献求助10
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
lixiaorui发布了新的文献求助30
2分钟前
2分钟前
帅气琦发布了新的文献求助10
2分钟前
2分钟前
nchudddd发布了新的文献求助10
2分钟前
领导范儿应助帅气琦采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
欣欣完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助MY采纳,获得30
3分钟前
3分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254426
求助须知:如何正确求助?哪些是违规求助? 4417336
关于积分的说明 13751271
捐赠科研通 4290010
什么是DOI,文献DOI怎么找? 2353954
邀请新用户注册赠送积分活动 1350565
关于科研通互助平台的介绍 1310718