亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning

污渍 神经内分泌肿瘤 人工智能 病理 增殖指数 计算机科学 H&E染色 分类 免疫组织化学 增殖指数 医学 染色
作者
Muhammad Khalid Khan Niazi,Thomas E. Tavolara,Vidya Arole,Douglas J. Hartman,Liron Pantanowitz,Metin N. Gürcan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:13 (4): e0195621-e0195621 被引量:42
标识
DOI:10.1371/journal.pone.0195621
摘要

The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor (NET). WHO mandates the quantification of Ki67 index by counting at least 500 positive tumor cells in a hotspot. Unfortunately, Ki67 antibody may stain both tumor and non-tumor cells as positive depending on the phase of the cell cycle. Likewise, the counter stain labels both tumor and non-tumor as negative. This non-specific nature of Ki67 stain and counter stain therefore hinders the exact quantification of Ki67 index. To address this problem, we present a deep learning method to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. Transfer learning was employed to recognize and apply relevant knowledge from previous learning experiences to differentiate between tumor and non-tumor regions. Transfer learning exploits a rich set of features previously used to successfully categorize non-pathology data into 1,000 classes. The method was trained and validated on a set of whole-slide images including 33 NETs subject to Ki67 immunohistochemical staining using a leave-one-out cross-validation. When applied to 30 high power fields (HPF) and assessed against a gold standard (evaluation by two expert pathologists), the method resulted in a high sensitivity of 97.8% and specificity of 88.8%. The deep learning method developed has the potential to reduce pathologists' workload by directly identifying tumor boundaries on images of Ki67 stained slides. Moreover, it has the potential to replace sophisticated and expensive imaging methods which are recently developed for identification of tumor boundaries in images of Ki67-stained NETs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助colorshark采纳,获得10
2秒前
星际舟完成签到,获得积分10
7秒前
25秒前
聪明的泡面完成签到 ,获得积分10
27秒前
29秒前
30秒前
俊逸沛菡完成签到 ,获得积分10
30秒前
GYN发布了新的文献求助10
33秒前
34秒前
colorshark发布了新的文献求助10
35秒前
英姑应助bsdd采纳,获得10
38秒前
伊坂完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
科目三应助被人强迫的采纳,获得10
1分钟前
超帅无血完成签到,获得积分10
1分钟前
Tian完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ktw完成签到,获得积分10
1分钟前
1分钟前
snsut发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
辣椒完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
xbbccc完成签到,获得积分10
3分钟前
上官若男应助snsut采纳,获得10
3分钟前
33完成签到,获得积分0
3分钟前
snsut完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
华仔应助科研通管家采纳,获得30
3分钟前
3分钟前
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015685
关于积分的说明 8871632
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482248
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951