Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning

热舒适性 偏爱 模拟 领域(数学) 计算机科学 人口 工程类 统计 数学 地理 气象学 社会学 人口学 纯数学
作者
Joyce Kim,Yuxun Zhou,Stefano Schiavon,Paul Raftery,Gail Brager
出处
期刊:Building and Environment [Elsevier]
卷期号:129: 96-106 被引量:324
标识
DOI:10.1016/j.buildenv.2017.12.011
摘要

A personal comfort model is a new approach to thermal comfort modeling that predicts individuals' thermal comfort responses, instead of the average response of a large population. However, securing consistent occupant feedback for model development is challenging as the current methods of data collection rely on individuals' survey participation. We explored the use of a new type of feedback, occupants' heating and cooling behavior with a personal comfort system (PCS) for the development of personal comfort models to predict individuals' thermal preference. The model development draws from field data including PCS control behavior, environmental conditions and mechanical system settings collected from 38 occupants in an office building, and employs six machine learning algorithms. The results showed that (1) personal comfort models based on all field data produced the median accuracy of 0.73 among all subjects and improved predictive accuracy compared to conventional models (PMV, adaptive) which produced a median accuracy of 0.51; (2) the PMV and adaptive models produced individual comfort predictions only slightly better than random guessing under the relatively mild indoor environment observed in the field study; and (3) the models based on PCS control behavior produced the best prediction accuracy when individually assessing all categories of field data acquired in the study. We conclude that personal comfort models based on occupants' heating and cooling behavior can effectively predict individuals' thermal preference and can therefore be used in everyday comfort management to improve occupant satisfaction and energy use in buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh740发布了新的文献求助30
刚刚
1秒前
NexusExplorer应助pharmstudent采纳,获得10
2秒前
熊遇蜜完成签到,获得积分10
4秒前
panzer完成签到,获得积分10
5秒前
6秒前
lyt发布了新的文献求助10
7秒前
六月毕业关注了科研通微信公众号
8秒前
petrichor应助程程采纳,获得10
9秒前
圆儿完成签到 ,获得积分10
9秒前
潇洒的灵萱完成签到,获得积分10
9秒前
9秒前
9秒前
Toooo完成签到,获得积分10
10秒前
zqh740完成签到,获得积分10
10秒前
科研通AI5应助thchiang采纳,获得10
10秒前
lizzzzzz完成签到,获得积分10
11秒前
yyj发布了新的文献求助10
11秒前
请和我吃饭完成签到,获得积分10
12秒前
北城发布了新的文献求助10
13秒前
勤恳冰淇淋完成签到 ,获得积分10
14秒前
16秒前
16秒前
清晏完成签到,获得积分10
17秒前
曲书文完成签到,获得积分10
18秒前
李瑞瑞发布了新的文献求助10
18秒前
5123完成签到,获得积分10
18秒前
勤劳落雁发布了新的文献求助10
18秒前
18秒前
21秒前
xuxu完成签到 ,获得积分10
21秒前
22秒前
毛毛虫发布了新的文献求助10
22秒前
科研通AI5应助朴斓采纳,获得10
23秒前
陈彦冰完成签到,获得积分10
23秒前
tianny完成签到,获得积分10
24秒前
浪迹天涯发布了新的文献求助10
25秒前
星星发布了新的文献求助10
25秒前
李瑞瑞完成签到,获得积分10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824