Characterization and Control of Irreversible Reaction in Li-Rich Cathode during the Initial Charge Process

材料科学 电化学 氧气 X射线光电子能谱 析氧 氧化还原 化学工程 碳化 涂层 氧化物 分析化学(期刊) 电极 纳米技术 物理化学 扫描电子显微镜 化学 复合材料 有机化学 工程类 冶金
作者
Hyejin Lee,Suk Bum Lim,Jin Young Kim,Mihee Jeong,Yong Joon Park,Won‐Sub Yoon
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (13): 10804-10818 被引量:51
标识
DOI:10.1021/acsami.7b12722
摘要

Li-rich layered oxide has been known to possess high specific capacity beyond the theoretical value from both charge compensation in transition metal and oxygen in the redox reaction. Although it could achieve higher reversible capacity due to the oxygen anion participating in electrochemical reaction, however, its use in energy storage systems has been limited. The reason is the irreversible oxygen reaction that occurs during the initial charge cycle, resulting in structural instability due to oxygen evolution and phase transition. To suppress the initial irreversible oxygen reaction, we introduced the surface-modified Li[Li0.2Ni0.16Mn0.56Co0.08]O2 prepared by carbon coating (carbonization process), which was verified to have reduced oxygen reaction during the initial charge cycle. The electrochemical performance is improved by the synergic effects of the oxygen-deficient layer and carbon coating layer formed on the surface of particles. The sample with suitable carbon coating exhibited the highest structural stability, resulting in reduced capacity fading and voltage decay, which are attributed to the mitigated layered-to-spinel-like phase transition during prolonged cycling. The control over the oxygen reaction of Li2MnO3 by surface modification affects the activation reaction above 4.4 V in the initial charge cycle and structure changes during prolonged cycling. X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy analyses as well as electrochemical performance measurement were used to identify the correlation between reduced oxygen activity and structural changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyy发布了新的文献求助10
刚刚
刚刚
Ir应助blue采纳,获得10
3秒前
4秒前
炙热的夜雪完成签到 ,获得积分10
6秒前
Jasper应助如沐春风采纳,获得10
7秒前
nojivv完成签到,获得积分10
10秒前
无奈尔曼发布了新的文献求助10
11秒前
科研通AI5应助咸鱼咸采纳,获得10
11秒前
qq完成签到 ,获得积分10
11秒前
小狗才喝冰红茶完成签到,获得积分10
13秒前
追寻的怜容完成签到,获得积分10
13秒前
13秒前
可乐完成签到 ,获得积分10
14秒前
Coo-kie99发布了新的文献求助10
16秒前
ganson完成签到 ,获得积分10
18秒前
丘比特应助苦酷采纳,获得10
20秒前
20秒前
Fuckacdemic完成签到,获得积分10
21秒前
25秒前
26秒前
如沐春风发布了新的文献求助10
31秒前
32秒前
JamesPei应助hy采纳,获得10
32秒前
玩命的绾绾完成签到 ,获得积分10
32秒前
33秒前
33秒前
34秒前
可爱的函函应助心海采纳,获得10
35秒前
李健的小迷弟应助dyy采纳,获得10
35秒前
36秒前
好久不见发布了新的文献求助10
37秒前
偏翩完成签到 ,获得积分10
37秒前
苦酷发布了新的文献求助10
38秒前
39秒前
40秒前
糖优优发布了新的文献求助10
40秒前
41秒前
43秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672528
求助须知:如何正确求助?哪些是违规求助? 3228832
关于积分的说明 9782122
捐赠科研通 2939271
什么是DOI,文献DOI怎么找? 1610713
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198