压电
材料科学
铁电性
居里温度
钙钛矿(结构)
陶瓷
凝聚态物理
掺杂剂
介电常数
相变
相(物质)
兴奋剂
复合材料
压电系数
化学物理
电介质
光电子学
结晶学
铁磁性
物理
化学
有机化学
作者
Fei Li,Dabin Lin,Zibin Chen,Zhenxiang Cheng,Jianli Wang,Chunchun Li,Zhuo Xu,Qianwei Huang,Xiaozhou Liao,Long‐Qing Chen,Thomas R. Shrout,Shujun Zhang
出处
期刊:Nature Materials
[Springer Nature]
日期:2018-03-19
卷期号:17 (4): 349-354
被引量:1012
标识
DOI:10.1038/s41563-018-0034-4
摘要
Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity e33/e0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI