An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment

人工智能 二元分类 判别式 计算机科学 痴呆 神经影像学 机器学习 分类器(UML) 认知障碍 特征选择 临床痴呆评级 认知 模式识别(心理学) 疾病 心理学 支持向量机 医学 病理 精神科
作者
Dongren Yao,Vince D. Calhoun,Zening Fu,Yuhui Du,Jing Sui
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:302: 75-81 被引量:41
标识
DOI:10.1016/j.jneumeth.2018.03.008
摘要

Discriminating Alzheimer's disease (AD) from its prodromal form, mild cognitive impairment (MCI), is a significant clinical problem that may facilitate early diagnosis and intervention, in which a more challenging issue is to classify MCI subtypes, i.e., those who eventually convert to AD (cMCI) versus those who do not (MCI). To solve this difficult 4-way classification problem (AD, MCI, cMCI and healthy controls), a competition was hosted by Kaggle to invite the scientific community to apply their machine learning approaches on pre-processed sets of T1-weighted magnetic resonance images (MRI) data and the demographic information from the international Alzheimer's disease neuroimaging initiative (ADNI) database. This paper summarizes our competition results. We first proposed a hierarchical process by turning the 4-way classification into five binary classification problems. A new feature selection technology based on relative importance was also proposed, aiming to identify a more informative and concise subset from 426 sMRI morphometric and 3 demographic features, to ensure each binary classifier to achieve its highest accuracy. As a result, about 2% of the original features were selected to build a new feature space, which can achieve the final four-way classification with a 54.38% accuracy on testing data through hierarchical grouping, higher than several alternative methods in comparison. More importantly, the selected discriminative features such as hippocampal volume, parahippocampal surface area, and medial orbitofrontal thickness, etc. as well as the MMSE score, are reasonable and consistent with those reported in AD/MCI deficits. In summary, the proposed method provides a new framework for multi-way classification using hierarchical grouping and precise feature selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碳土不凡完成签到 ,获得积分10
1秒前
在水一方应助huahua采纳,获得10
2秒前
MJX发布了新的文献求助10
2秒前
Mipe完成签到,获得积分10
3秒前
冰红茶发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
5秒前
易槐完成签到,获得积分10
7秒前
dddd完成签到,获得积分10
9秒前
温婉的香水完成签到 ,获得积分10
9秒前
大酋长完成签到,获得积分10
10秒前
10秒前
高兴的曼卉关注了科研通微信公众号
10秒前
pluto完成签到,获得积分0
11秒前
Berberin完成签到,获得积分10
12秒前
星辰大海应助阿池采纳,获得10
15秒前
老薛完成签到,获得积分10
15秒前
18秒前
灵巧汉堡完成签到 ,获得积分10
18秒前
风中莫英发布了新的文献求助10
18秒前
liyang999完成签到,获得积分10
19秒前
curtisness应助aji采纳,获得10
19秒前
19秒前
21秒前
YJ完成签到,获得积分10
22秒前
害羞的采波完成签到,获得积分10
23秒前
陪你长大发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
柔弱静柏完成签到,获得积分10
24秒前
筱溪完成签到 ,获得积分10
24秒前
一只蓉馍馍完成签到,获得积分10
25秒前
孝铮完成签到 ,获得积分10
25秒前
椿iii完成签到 ,获得积分10
27秒前
28秒前
赘婿应助王sir采纳,获得10
28秒前
28秒前
kytyzx完成签到 ,获得积分10
29秒前
陪你长大完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023