材料科学
聚苯胺
纳米复合材料
超级电容器
傅里叶变换红外光谱
化学工程
电化学
电极
扫描电子显微镜
透射电子显微镜
纳米颗粒
原位聚合
电解质
聚合
纳米技术
聚合物
复合材料
化学
物理化学
工程类
作者
Thibeorchews Prasankumar,Biny R. Wiston,Chandkiram Gautam,R. Ilangovan,Sujin P. Jose
标识
DOI:10.1016/j.jallcom.2018.05.108
摘要
Conducting polymer nanocomposites associated with metal oxides are emerging class of pseudocapacitive materials that exhibit enhanced electrochemical performance in energy storage applications. In this work, we fabricated polyaniline (PANI)/Fe3O4 nanocomposite (PFNC) through the in situ polymerization of aniline in presence of microwave synthesised Fe3O4 nanoparticles. The prepared PFNC was characterised by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The surface morphology was investigated by scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. TEM studies revealed the presence of Fe3O4 nanoparticles wrapped by PANI with size in the range of 40–60 nm. The porous structure is validated by the associated morphology, where the voids are created by the formation of microspheres out of the nanospheres. These spaces boost the electrochemical activity of the PFNC by facilitating more sites for the insertion of electrolytic ions during the electrochemical reaction process. The fabricated PFNC on carbon felt offers the enhanced electrochemical properties and exhibits high specific capacitance (572 F g−1 at 0.5 A g−1), pronounced cycling stability (>5000 cycles at 1 A g−1) with good capacitance retention (82%). An excellent rate performance of 71.9% is also exhibited by the PFNC electrode with ten times the original current density (from 0.5 A g−1 to 5 A g−1). These out-standing characteristics prove that PFNC has a great potential to be exploited as highly efficient electrode materials for supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI