ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

刀切重采样 航程(航空) 样本量测定 环境生态位模型 物种分布 采样(信号处理) 样品(材料) 统计 生态学 生态位 生物 数学 计算机科学 栖息地 材料科学 化学 滤波器(信号处理) 色谱法 估计员 复合材料 计算机视觉
作者
Richard G. Pearson,Christopher J. Raxworthy,Miguel Nakamura,A. Townsend Peterson
出处
期刊:Journal of Biogeography [Wiley]
卷期号:34 (1): 102-117 被引量:2765
标识
DOI:10.1111/j.1365-2699.2006.01594.x
摘要

Abstract Aim Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available. Location Madagascar. Methods Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos ( Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km 2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP). Results We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included. Main conclusions We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaomiemie完成签到,获得积分20
刚刚
思源应助疯狂的鱼采纳,获得10
刚刚
1秒前
wood发布了新的文献求助20
1秒前
1秒前
heli发布了新的文献求助10
1秒前
lsq108发布了新的文献求助10
1秒前
tea发布了新的文献求助10
2秒前
NexusExplorer应助顺心的筮采纳,获得10
3秒前
UUSee完成签到,获得积分10
3秒前
uni发布了新的文献求助10
4秒前
4秒前
4秒前
我是老大应助骄阳似我采纳,获得10
4秒前
希望天下0贩的0应助zoe采纳,获得10
5秒前
6秒前
一一一一一完成签到 ,获得积分10
6秒前
Apricot发布了新的文献求助10
6秒前
斯文谷秋发布了新的文献求助10
6秒前
半截神经病完成签到,获得积分10
6秒前
Ava应助最爱学习的亚子采纳,获得10
6秒前
CipherSage应助十八采纳,获得10
7秒前
Hugt完成签到,获得积分10
7秒前
星星发布了新的文献求助10
8秒前
完美世界应助Rainy采纳,获得10
8秒前
9秒前
10秒前
缥缈的紫青完成签到,获得积分10
10秒前
11秒前
小蘑菇应助uni采纳,获得10
11秒前
12秒前
12秒前
khll完成签到,获得积分20
12秒前
性温雅完成签到 ,获得积分10
12秒前
Hugt发布了新的文献求助10
12秒前
充电宝应助微微采纳,获得10
13秒前
13秒前
易大师发布了新的文献求助10
15秒前
16秒前
深情安青应助激动的白梅采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3105631
求助须知:如何正确求助?哪些是违规求助? 2756681
关于积分的说明 7641226
捐赠科研通 2410796
什么是DOI,文献DOI怎么找? 1279097
科研通“疑难数据库(出版商)”最低求助积分说明 617641
版权声明 599262