ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

刀切重采样 航程(航空) 样本量测定 环境生态位模型 物种分布 采样(信号处理) 样品(材料) 统计 生态学 生态位 生物 数学 计算机科学 栖息地 滤波器(信号处理) 材料科学 化学 估计员 复合材料 色谱法 计算机视觉
作者
Richard G. Pearson,Christopher J. Raxworthy,Miguel Nakamura,A. Townsend Peterson
出处
期刊:Journal of Biogeography [Wiley]
卷期号:34 (1): 102-117 被引量:2997
标识
DOI:10.1111/j.1365-2699.2006.01594.x
摘要

Abstract Aim Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available. Location Madagascar. Methods Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos ( Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km 2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP). Results We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included. Main conclusions We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助S1采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
sophia完成签到,获得积分10
2秒前
2秒前
Lyp888206发布了新的文献求助10
3秒前
4秒前
ll发布了新的文献求助10
5秒前
sophia发布了新的文献求助20
5秒前
复杂绝悟发布了新的文献求助10
6秒前
7秒前
爱雪的猫发布了新的文献求助10
7秒前
7秒前
王倩倩发布了新的文献求助20
9秒前
shary完成签到,获得积分10
9秒前
甜蜜骁发布了新的文献求助30
10秒前
祖老头发布了新的文献求助10
11秒前
英俊的铭应助起司猫采纳,获得10
11秒前
Double完成签到 ,获得积分10
11秒前
科研通AI6应助不安的凡桃采纳,获得10
11秒前
Owen应助棕榈采纳,获得10
13秒前
Sakurasamada发布了新的文献求助20
13秒前
13秒前
白羊完成签到,获得积分10
14秒前
14秒前
薛之谦的猫应助任性白秋采纳,获得10
14秒前
向日葵完成签到 ,获得积分10
14秒前
Lee完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
Lee发布了新的文献求助10
18秒前
18秒前
潇洒毛给潇洒毛的求助进行了留言
19秒前
颖火虫2588发布了新的文献求助10
19秒前
20秒前
小冯发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521