ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

刀切重采样 航程(航空) 样本量测定 环境生态位模型 物种分布 采样(信号处理) 样品(材料) 统计 生态学 生态位 生物 数学 计算机科学 栖息地 滤波器(信号处理) 材料科学 化学 估计员 复合材料 色谱法 计算机视觉
作者
Richard G. Pearson,Christopher J. Raxworthy,Miguel Nakamura,A. Townsend Peterson
出处
期刊:Journal of Biogeography [Wiley]
卷期号:34 (1): 102-117 被引量:2997
标识
DOI:10.1111/j.1365-2699.2006.01594.x
摘要

Abstract Aim Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available. Location Madagascar. Methods Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos ( Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km 2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP). Results We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included. Main conclusions We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小安同学完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
gglp完成签到 ,获得积分10
3秒前
Fengzhen007完成签到,获得积分10
4秒前
6秒前
潜龙完成签到 ,获得积分10
6秒前
Febridge完成签到,获得积分10
8秒前
王京华完成签到,获得积分10
9秒前
yznfly应助化简为繁采纳,获得30
10秒前
乐观海云完成签到 ,获得积分10
10秒前
陈咪咪完成签到,获得积分10
10秒前
Ares完成签到,获得积分10
11秒前
浮游应助imi采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
14秒前
Greg应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
张庭豪完成签到,获得积分10
14秒前
16秒前
sdjjis完成签到 ,获得积分10
16秒前
Snail6完成签到,获得积分10
17秒前
研友_LX7zK8完成签到,获得积分10
18秒前
简奥斯汀完成签到 ,获得积分10
18秒前
wxp5294完成签到,获得积分10
18秒前
18秒前
寒冷丹雪完成签到,获得积分10
18秒前
缺缺完成签到,获得积分10
19秒前
牛仔完成签到 ,获得积分10
20秒前
21秒前
时有落花至完成签到,获得积分10
22秒前
可靠的千凝完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071