亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

刀切重采样 航程(航空) 样本量测定 环境生态位模型 物种分布 采样(信号处理) 样品(材料) 统计 生态学 生态位 生物 数学 计算机科学 栖息地 滤波器(信号处理) 材料科学 化学 估计员 复合材料 色谱法 计算机视觉
作者
Richard G. Pearson,Christopher J. Raxworthy,Miguel Nakamura,A. Townsend Peterson
出处
期刊:Journal of Biogeography [Wiley]
卷期号:34 (1): 102-117 被引量:2997
标识
DOI:10.1111/j.1365-2699.2006.01594.x
摘要

Abstract Aim Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available. Location Madagascar. Methods Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos ( Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km 2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP). Results We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included. Main conclusions We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
sxmt123456789完成签到,获得积分10
6秒前
赘婿应助hoojw采纳,获得10
7秒前
Zhao完成签到 ,获得积分10
8秒前
熊猫完成签到 ,获得积分10
9秒前
lqhccww发布了新的文献求助10
20秒前
研友_8yN60L完成签到,获得积分10
23秒前
ZB完成签到,获得积分10
27秒前
直率无声完成签到,获得积分10
29秒前
开朗满天完成签到,获得积分10
34秒前
深情安青应助lqhccww采纳,获得10
34秒前
牛八先生完成签到,获得积分10
37秒前
lu完成签到,获得积分10
41秒前
侧耳发布了新的文献求助10
43秒前
44秒前
激动的晓筠完成签到 ,获得积分10
44秒前
hh完成签到,获得积分10
45秒前
外向小猫咪完成签到,获得积分10
48秒前
静待花开发布了新的文献求助10
49秒前
文艺的枫叶完成签到 ,获得积分10
57秒前
meow完成签到 ,获得积分10
59秒前
Jerry完成签到 ,获得积分10
1分钟前
打打应助121231233采纳,获得10
1分钟前
OrangeWang完成签到,获得积分10
1分钟前
OrangeWang发布了新的文献求助10
1分钟前
orixero应助我去吃饭采纳,获得10
1分钟前
1分钟前
小尾巴完成签到 ,获得积分10
1分钟前
1分钟前
大个应助Nature_Science采纳,获得10
1分钟前
zero完成签到 ,获得积分10
1分钟前
gty完成签到,获得积分10
1分钟前
bob完成签到 ,获得积分10
1分钟前
121231233发布了新的文献求助10
1分钟前
友好白凡发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866566
捐赠科研通 4706287
什么是DOI,文献DOI怎么找? 2542732
邀请新用户注册赠送积分活动 1508144
关于科研通互助平台的介绍 1472276