基因组
贝叶斯概率
污染
源跟踪
计算机科学
计算生物学
数据科学
样品(材料)
生化工程
环境科学
生物
人工智能
生态学
万维网
化学
基因
遗传学
工程类
色谱法
作者
Dan Knights,Justin Kuczynski,Emily S. Charlson,Jesse Zaneveld,Michael C. Mozer,Ronald G. Collman,Frederic D. Bushman,Rob Knight,Scott T. Kelley
出处
期刊:Nature Methods
[Springer Nature]
日期:2011-07-17
卷期号:8 (9): 761-763
被引量:1417
摘要
SourceTracker finds the proportion and origin of contaminants in a given sample. Its database will prove useful in screening of metagenomic datasets for contaminants. Contamination is a critical issue in high-throughput metagenomic studies, yet progress toward a comprehensive solution has been limited. We present SourceTracker, a Bayesian approach to estimate the proportion of contaminants in a given community that come from possible source environments. We applied SourceTracker to microbial surveys from neonatal intensive care units (NICUs), offices and molecular biology laboratories, and provide a database of known contaminants for future testing.
科研通智能强力驱动
Strongly Powered by AbleSci AI