p38丝裂原活化蛋白激酶
激酶
一氧化氮合酶
MAPK/ERK通路
一氧化氮
脂多糖
化学
蛋白激酶A
磷酸化
蛋白激酶B
信号转导
分子生物学
炎症
细胞生物学
生物
生物化学
免疫学
有机化学
作者
Mei–Hsuan Lee,DH Kim,JE Hong,J-Y Lee,EJ Kim
标识
DOI:10.1177/0960327114559989
摘要
Excessive inflammation is considered a critical factor in many human diseases. Oxyresveratrol(trans-2,3′,4,5′-tetrahydroxystilbene), a natural hydroxystilbene, has been shown to possess antioxidant and free radical-scavenging activity. In this study, we investigated the effects of oxyresveratrol (OxyR) on the lipopolysaccharide (LPS)-induced production of inflammatory cytokines and mediators and further explored the mechanism of action in RAW264.7 murine macrophage cell line. Production of nitric oxide (NO), prostaglandin E2 (PGE 2 ), messenger RNA (mRNA) and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and granulocyte macrophage colony-stimulating factor (GM-CSF), phosphorylation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38), and the activation of nuclear factor κ-light chain enhancer of activated B cells (NFκB) with OxyR were assayed in LPS-stimulated RAW264.7 cells. OxyR inhibited the productions of NO, PGE 2 , IL-6, and GM-CSF significantly in LPS-stimulated RAW264.7 cells. OxyR suppressed mRNA and protein expressions of iNOS, COX-2, IL-6, and GM-CSF in LPS-stimulated RAW264.7 cells. OxyR suppressed the phosphorylation of Akt and JNK and p38 MAPKs and the translocation of NFκB p65 subunit into the nucleus. These results indicate that OxyR inhibits LPS-stimulated inflammatory responses though the blocking of MAPK and NFκB signaling pathway in macrophages, and suggest that OxyR possesses anti-inflammatory effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI