Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel

材料科学 Twip公司 裂缝闭合 巴黎法 冶金 可塑性 奥氏体 裂纹扩展阻力曲线 应力集中 复合材料 打滑(空气动力学) 断裂力学 微观结构 物理 热力学
作者
Penghui Ma,Lihe Qian,Jiangying Meng,Shuai Liu,Fucheng Zhang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:605: 160-166 被引量:55
标识
DOI:10.1016/j.msea.2014.03.035
摘要

The fatigue crack growth behavior of a coarse-grained (CG) and a fine-grained (FG) high manganese austenitic twin-induced plasticity (TWIP) steel has been investigated at room temperature. Crack growth tests were performed at stress ratios of 0.1 and 0.6 under the control of stress intensity factor range using three-point bending specimens. The results indicate that at the two stress ratios, the CG steel exhibits a higher fatigue crack growth resistance than the FG steel in both the near threshold and Paris regimes. Furthermore, a decreased stress ratio and an increased grain size both lead to an increased fatigue crack growth threshold. Microstructural observations reveal that cracks propagate more tortuously in the CG steel than in the FG steel, accompanied by rougher fracture surfaces, which tends to generate more roughness-induced crack closure and thus a higher fatigue threshold value. Additionally, the CG steel shows much larger plastic zone sizes ahead of the crack tip than the FG steel, suggesting that plasticity-induced crack closure may also play an important role in decreasing the fatigue crack growth rate in the CG steel. By excluding the crack closure effects, the CG steel still demonstrates a higher effective crack growth threshold than the FG steel; this is considered to be due to the increased planarity of slip in the CG steel, as compared with that in the FG steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pauline完成签到,获得积分10
2秒前
jackie发布了新的文献求助10
2秒前
笨笨摇伽发布了新的文献求助10
4秒前
科目三应助皓月繁星采纳,获得10
4秒前
tomato完成签到,获得积分20
6秒前
CodeCraft应助缘一采纳,获得10
7秒前
小二郎应助刘铭晨采纳,获得10
7秒前
7秒前
大个应助风雨1210采纳,获得10
7秒前
一壶清酒完成签到,获得积分10
7秒前
8秒前
tomato发布了新的文献求助30
9秒前
陈莹发布了新的文献求助10
10秒前
11秒前
11秒前
小狗同志006完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
皓月繁星完成签到,获得积分10
12秒前
ZeJ发布了新的文献求助10
13秒前
13秒前
14秒前
usrcu完成签到 ,获得积分10
14秒前
122x应助赖道之采纳,获得10
15秒前
厉不厉害你坤哥完成签到,获得积分10
15秒前
wuzhizhiya发布了新的文献求助10
16秒前
16秒前
16秒前
皓月繁星发布了新的文献求助10
17秒前
17秒前
迷路白桃发布了新的文献求助20
17秒前
ZeJ完成签到,获得积分10
18秒前
景别发布了新的文献求助10
18秒前
18秒前
NexusExplorer应助陈莹采纳,获得10
19秒前
GXY发布了新的文献求助10
19秒前
嘟嘟发布了新的文献求助10
20秒前
22秒前
Akim应助单纯的雅香采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808