Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel

材料科学 Twip公司 裂缝闭合 巴黎法 冶金 可塑性 奥氏体 裂纹扩展阻力曲线 应力集中 复合材料 打滑(空气动力学) 断裂力学 微观结构 热力学 物理
作者
Penghui Ma,Lihe Qian,Jiangying Meng,Shuai Liu,Fucheng Zhang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:605: 160-166 被引量:55
标识
DOI:10.1016/j.msea.2014.03.035
摘要

The fatigue crack growth behavior of a coarse-grained (CG) and a fine-grained (FG) high manganese austenitic twin-induced plasticity (TWIP) steel has been investigated at room temperature. Crack growth tests were performed at stress ratios of 0.1 and 0.6 under the control of stress intensity factor range using three-point bending specimens. The results indicate that at the two stress ratios, the CG steel exhibits a higher fatigue crack growth resistance than the FG steel in both the near threshold and Paris regimes. Furthermore, a decreased stress ratio and an increased grain size both lead to an increased fatigue crack growth threshold. Microstructural observations reveal that cracks propagate more tortuously in the CG steel than in the FG steel, accompanied by rougher fracture surfaces, which tends to generate more roughness-induced crack closure and thus a higher fatigue threshold value. Additionally, the CG steel shows much larger plastic zone sizes ahead of the crack tip than the FG steel, suggesting that plasticity-induced crack closure may also play an important role in decreasing the fatigue crack growth rate in the CG steel. By excluding the crack closure effects, the CG steel still demonstrates a higher effective crack growth threshold than the FG steel; this is considered to be due to the increased planarity of slip in the CG steel, as compared with that in the FG steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LILI发布了新的文献求助10
刚刚
1秒前
险胜发布了新的文献求助10
1秒前
cc完成签到 ,获得积分10
2秒前
远方发布了新的文献求助10
2秒前
精明的小刺猬完成签到 ,获得积分10
2秒前
zz关闭了zz文献求助
2秒前
2秒前
wop111应助南宫雪采纳,获得20
2秒前
rr完成签到,获得积分10
3秒前
白鹭立雪完成签到,获得积分10
3秒前
PAUL发布了新的文献求助10
3秒前
慕青应助111采纳,获得10
3秒前
3秒前
CodeCraft应助111采纳,获得10
3秒前
xu1227应助111采纳,获得20
3秒前
4秒前
4秒前
lm完成签到,获得积分10
4秒前
小马甲应助无限尔云采纳,获得10
4秒前
没有名称完成签到,获得积分10
4秒前
4秒前
迷人小张发布了新的文献求助10
5秒前
5秒前
吴海娇发布了新的文献求助10
5秒前
LLII完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
xubee完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
完美世界应助PAUL采纳,获得10
9秒前
ChenK发布了新的文献求助10
9秒前
老王发布了新的文献求助10
10秒前
张爽发布了新的文献求助30
11秒前
Ws完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705