数学
强对偶性
下确界和上确界
计算理论
Wolfe对偶
对偶(序理论)
弱对偶
拉格朗日乘数
对偶间隙
鞍点
等价(形式语言)
拉格朗日
马鞍
格子(音乐)
集合(抽象数据类型)
数学优化
应用数学
纯数学
最优化问题
离散数学
几何学
计算机科学
算法
声学
物理
程序设计语言
作者
Andreas H. Hamel,Andreas Löhne
标识
DOI:10.1007/s10957-013-0431-4
摘要
Based on the complete-lattice approach, a new Lagrangian duality theory for set-valued optimization problems is presented. In contrast to previous approaches, set-valued versions for the known scalar formulas involving infimum and supremum are obtained. In particular, a strong duality theorem, which includes the existence of the dual solution, is given under very weak assumptions: The ordering cone may have an empty interior or may not be pointed. "Saddle sets" replace the usual notion of saddle points for the Lagrangian, and this concept is proven to be sufficient to show the equivalence between the existence of primal/dual solutions and strong duality on the one hand and the existence of a saddle set for the Lagrangian on the other hand.
科研通智能强力驱动
Strongly Powered by AbleSci AI