Constraints on the Coevolution of Bacteria and Virulent Phage: A Model, Some Experiments, and Predictions for Natural Communities

毒力 生物 恒化器 突变率 人口 细菌 共同进化 突变体 大肠杆菌 遗传学 突变 微生物学 噬菌体 基因 生态学 社会学 人口学
作者
Richard E. Lenski,Bruce R. Levin
出处
期刊:The American Naturalist [The University of Chicago Press]
卷期号:125 (4): 585-602 被引量:450
标识
DOI:10.1086/284364
摘要

One view of the coevolution of parasites and their hosts is that of a gene-for-gene arms race between host defenses and parasite counterdefenses. We have incorporated mutations into a model of the ecological interactions between bacteria and virulent phage to determine rates of mutation that would be consistent with this scenario. The model assumes an open habitat (e.g., a chemostat) in which virulent phage and sensitive bacteria can coexist. Equilibrium densities of bacteria and phage are inversely proportional to the efficiency with which phage irreversibly adsorb to their hosts. The absolute rate at which mutations appear is proportional to the product of habitat size, population density, rate of increase, and mutation rate. The bacterium Escherichia coli B readily evolved resistance to virulent phage T4 in our chemostat experiments. Approximately 100 h was required for the appearance, establishment, and attainment of a resource-limited population of these T4-resistant mutants; this time period is close to that predicted from the model when the parameters of the model are estimated independently. No host-range phage T4 mutants appeared, yet the phage persisted even after the resistant bacteria had become resource-limited. We hypothesized that the failure to observe corresponding phage mutants indicates mutational constraints on the coevolutionary potential of this phage. We also hypothesized that the persistence of the wild-type phage indicates the presence of a minority population of sensitive bacteria that persists because of selective constraints which produce a competitive disadvantage for resistant bacteria under resource-limiting conditions. Both of these hypotheses were verified. Host-range T4 mutants occurred at a rate on the order of 10-12 or less, and could not be expected in the chemostats for several years. T4-sensitive and -resistant bacteria had very nearly the same exponential growth rates, but at steady state the latter had approximately a 50% disadvantage. We also examined the interactions of E. coli B and virulent phages T2, T5, and T7 for evidence of selective and mutational constraints on the bacteria and phage, respectively. Under the conditions of our experiments, T2-resistant and T7-resistant (but not T5-resistant) bacteria also had clear competitive disadvantages to sensitive bacteria under resource-limiting conditions. We were able to isolate T2 and T7 (but not T5) host-range mutants. Even with T2 and T7, however, we could not select indefinitely for host-range mutants active against higher-order resistant bacteria. This general asymmetry in the coevolutionary potential of bacteria and phage occurs because mutations conferring resistance may arise by either the loss or alteration of gene function, while host-range mutations depend on specific alterations of gene function. These constraints preclude observing endless arms races between bacteria and virulent phage. Instead, because of the asymmetry in coevolutionary potential of these hosts and parasites, we anticipate that natural communities of coliform bacteria and virulent coliphage are dominated by bacterial clones resistant to all co-occurring virulent phage. If virulent phage to which the dominant clones are sensitive should appear, then bacteria will either rapidly evolve resistance or be replaced by existing clones resistant to the phage. Thus, the role of virulent phage in structuring communities of bacteria is seen as important in determining clonal composition but unimportant in determining overall bacterial densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快芜榆完成签到 ,获得积分10
刚刚
热心晓丝发布了新的文献求助200
刚刚
1秒前
科研混子完成签到,获得积分10
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
WQJ发布了新的文献求助10
4秒前
4秒前
俭朴人杰应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
俭朴人杰应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
巫黎九曌应助科研通管家采纳,获得30
5秒前
大模型应助科研通管家采纳,获得10
5秒前
俭朴人杰应助科研通管家采纳,获得10
5秒前
巫黎九曌应助科研通管家采纳,获得30
5秒前
5秒前
俭朴人杰应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
俭朴人杰应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599