平行六面体
有限元法
点(几何)
要素(刑法)
几何学
弯曲
扩展(谓词逻辑)
流离失所(心理学)
平面(几何)
数学
平面应力
扩展离散元法
多边形网格
四边形的
数学分析
混合有限元法
结构工程
有限元极限分析
工程类
计算机科学
政治学
法学
程序设计语言
心理学
心理治疗师
作者
Eiris F. I. Boerner,Stefan Löhnert,Peter Wriggers
摘要
This paper describes an improvement of the Cosserat point element formulation for initially distorted, non-rectangular shaped elements in 2D. The original finite element formulation for 3D large deformations shows excellent behaviour for sensitive geometries, large deformations, coarse meshes, bending dominated and stability problems without showing undesired effects such as locking or hourglassing, as long as the initial element shape resembles that of a rectangular parallelepiped. In the following, an extension of this element formulation for 2D plane strain is presented which has the same good properties also for the case of non-rectangular initial element shapes. Results of numerical tests are presented, that clearly show the advantages of the improved Cosserat point element compared to the standard displacement elements and the original version of the Cosserat point element. Copyright © 2007 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI