化学
生物物理学
电导
膜
膜电位
膜片钳
离子通道
分析化学(期刊)
解剖
生物化学
生物
色谱法
数学
组合数学
受体
作者
Jacques Teulon,Marc Paulais,M. Bouthier
标识
DOI:10.1016/0005-2736(87)90016-2
摘要
The patch-clamp technique was used to investigate the properties of a cation-selective channel in the basolateral membrane of microdissected collagenase-treated fragments of cortical thick ascending limbs of Henle's loop from mouse kidney. The channel activity was seldom observed in cell-attached patches (2 out 15 studied cases). In inside-out excised patches immersed in symmetrical NaCl Ringer's solutions, the unit channel conductance was ohmic and ranged from 22 to 33 pS (mean, 26.8 +/- 0.6 pS, n = 24). When NaCl was replaced by KCl (n = 8) or sodium gluconate (n = 2) on the cytoplasmic side of the membrane, single-channel currents still reversed at 0 mV and the conductance was unchanged. The reversal potential was +28.8 +/- 0.4 mV (n = 8) when a NaCl concentration (140 vs. 42 mmol/l) gradient was applied, close to the expected value (approx. 30 mV) for a cation selective channel. The channel was found to discriminate poorly between Na+, K+, Cs+, and Li+ ions. The activity of the channel was not clearly voltage-dependent but was dependent upon the free Ca2+ concentration on the cytoplasmic side of the membrane. We conclude that the channel resembles the non-selective cation channel which has been previously described in several tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI