Correlation between response to neoadjuvant chemotherapy and survival in locally advanced breast cancer patients

医学 乳腺癌 内科学 实体瘤疗效评价标准 化疗 肿瘤科 相关性 科恩卡帕 统计的 癌症 进行性疾病 统计 几何学 数学
作者
Atocha Romero,José Á. García-Sáenz,Manuel Fuentes,José Antonio López García‐Asenjo,Vicente Furió,J.M. Román,A. Moreno,Miguel de la Hoya,Eduardo Díaz‐Rubio,Miguel Martín,Trinidad Caldés
出处
期刊:Annals of Oncology [Elsevier]
卷期号:24 (3): 655-661 被引量:58
标识
DOI:10.1093/annonc/mds493
摘要

ABSTRACT Background Measurement of residual disease following neoadjuvant chemotherapy that accurately predicts long-term survival in locally advanced breast cancer (LABC) is an essential requirement for clinical trials development. Several methods to assess tumor response have been described. However, the agreement between methods and correlation with survival in independent cohorts has not been reported. Patients and methods We report survival and tumor response according to the measurement of residual breast cancer burden (RCB), the Miller and Payne classification and the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, in 151 LABC patients. Kappa Cohen's coefficient (К) was used to test the agreement between methods. We assessed the correlation between the treatment outcome and overall survival (OS) and relapse-free survival (RFS) by calculating Harrell's C-statistic (c). Results The agreement between Miller and Payne classification and RCB classes was very high (К = 0.82). In contrast, we found a moderate-to-fair agreement between the Miller and Payne classification and RECIST criteria (К = 0.52) and RCB classes and RECIST criteria (К = 0.38). The adjusted C-statistic to predict OS for RCB index (0.77) and RCB classes (0.75) was superior to that of RECIST criteria (0.69) (P = 0.007 and P = 0.035, respectively). Also, RCB index (c = 0.71), RCB classes (c = 0.71) and Miller and Payne classification (c = 0.67) predicted better RFS than RECIST criteria (c = 0.61) (P = 0.005, P = 0.006 and P = 0.028, respectively). Conclusions The pathological assessment of tumor response might provide stronger prognostic information in LABC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天玄一刀完成签到,获得积分10
1秒前
双马尾小男生2完成签到,获得积分10
2秒前
大方的蓝完成签到 ,获得积分10
3秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
SPARK应助科研通管家采纳,获得10
9秒前
charint应助科研通管家采纳,获得10
9秒前
SPARK应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
SPARK应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得20
9秒前
整齐晓筠完成签到 ,获得积分10
10秒前
科研通AI2S应助舒心的雍采纳,获得10
14秒前
贪玩初彤完成签到 ,获得积分10
15秒前
anhuiwsy完成签到 ,获得积分10
18秒前
虚心的乘云完成签到,获得积分10
19秒前
augen完成签到 ,获得积分10
23秒前
23秒前
Peter完成签到 ,获得积分10
25秒前
tjfwg完成签到,获得积分10
27秒前
舒心的雍发布了新的文献求助10
28秒前
djdh发布了新的文献求助200
32秒前
LUNE完成签到 ,获得积分10
34秒前
Iron_five完成签到 ,获得积分0
37秒前
xuxuxuxu完成签到 ,获得积分10
37秒前
激昂的化蛹完成签到,获得积分10
40秒前
40秒前
Borges完成签到 ,获得积分10
41秒前
科研通AI2S应助调皮元珊采纳,获得10
45秒前
HJJHJH发布了新的文献求助10
48秒前
共享精神应助阿星捌采纳,获得10
51秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466