A Nonparametric Approach to the Truncated Regression Problem

数学 计量经济学 估计员 人口 统计 回归分析 残余物 线性回归 回归 工具变量 应用数学 算法 社会学 人口学
作者
Kwok Leung Tsui,Nicholas P. Jewell,Changbao Wu
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:83 (403): 785-792 被引量:38
标识
DOI:10.1080/01621459.1988.10478664
摘要

Abstract A description is given of a new method of estimating the regression parameters in the linear regression model from data where the dependent variable is subject to truncation. The residual distribution is allowed to be unspecified. The method is iterative and involves estimation of the residual distribution under the truncated sampling scheme. The technique can be interpreted as an iterative bias adjustment of the observations in order to correct the regression relationship in the sampled population to match that of the model. A simulation study compares the performance of various estimators, including one suggested by Bhattacharya, Chernoff, and Yang (1983). This truncation regression problem arises in many contexts of scientific and social research. In economics Tobin (1958) analyzed household expenditure on durable goods using a regression model that took account of the fact that the expenditure is always nonnegative. A more general situation was studied by Hausman and Wise (1976, 1977) in connection with negative income-tax experiments. Another example concerning the schooling and earnings of low achievers was studied by Hansen, Weisbrod, and Scanlon (1970). There is also a controversy in astronomy involving Hubble's law and Segal's chronometric theory (Nicoll and Segal 1982; Turner 1979). Both theories predict a straight line relating the negative log of luminosity and the log of velocity as measured by red shift for celestial objects. The problem is complicated by the fact that objects of low luminosity are not visible, and hence all data relating to them are unobserved. Holgate (1965) described a biological example. A truncated linear regression model is defined as y = x T β + e, where x is a vector of covariates, β is the vector of parameter of interest, and e is independent of x with mean 0 and cumulative distribution F. The datum (x, y) is observed only if y ≤ y 0. The truncation point y 0 is known. Based on n independent observations (x i , y i ) with yi ≤ y 0, it is desired to estimate β and F. Note that this differs from the censored regression model where data (x, y) with y > y 0 is observed but with the y value set to y 0. The procedures described in the article are easily extended to truncation from below and the situation where the truncation points vary across observations. It is straightforward to see that the ordinary least squares estimate of β is inconsistent. A common method of dealing with this problem is to assume that the error distribution F is Gaussian and proceed with standard parametric methods. In many applications this assumption may not be reasonable. Hence there is interest in developing nonparametric methods of estimation that do not rely on assumptions about F. In this article a new approach for estimating β is introduced. The method allows the error distribution F to be arbitrary and is general enough to handle multiple linear regression. The rank-based method of Bhattacharya et al. (1983), which was designed for simple linear regression, is compared with the proposed method using a simulation study. The new approach appears to give estimators with good bias and efficiency properties in a wide variety of situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的忆灵完成签到 ,获得积分10
5秒前
13秒前
20秒前
现代期待发布了新的文献求助10
20秒前
cata完成签到,获得积分10
21秒前
现代期待完成签到,获得积分10
24秒前
乐观健柏完成签到 ,获得积分10
26秒前
陶醉的翠霜完成签到 ,获得积分10
26秒前
SC完成签到 ,获得积分10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
laber应助BruceCJH采纳,获得30
31秒前
___淡完成签到 ,获得积分10
34秒前
48秒前
shlw发布了新的文献求助10
51秒前
科研通AI5应助nini采纳,获得10
59秒前
shlw完成签到,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
连难胜完成签到 ,获得积分10
1分钟前
缘分完成签到,获得积分10
1分钟前
firewood完成签到,获得积分10
1分钟前
arbitmomo完成签到,获得积分10
1分钟前
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
李爱国应助arbitmomo采纳,获得10
1分钟前
皎月诗心完成签到 ,获得积分10
1分钟前
抓个小孩完成签到 ,获得积分10
1分钟前
whitepiece完成签到,获得积分10
1分钟前
Bella完成签到 ,获得积分10
1分钟前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
2分钟前
柚C美式完成签到 ,获得积分10
2分钟前
2分钟前
arbitmomo发布了新的文献求助10
2分钟前
和平使命应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
和平使命应助科研通管家采纳,获得10
2分钟前
和平使命应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674477
求助须知:如何正确求助?哪些是违规求助? 3229813
关于积分的说明 9787109
捐赠科研通 2940387
什么是DOI,文献DOI怎么找? 1611886
邀请新用户注册赠送积分活动 761060
科研通“疑难数据库(出版商)”最低求助积分说明 736471