Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery

高光谱成像 约束(计算机辅助设计) 端元 像素 估计员 最小二乘函数近似 计算机科学 丰度(生态学) 算法 数学 人工智能 数学优化 统计 几何学 渔业 生物
作者
Daniel Heinz,Chein-I-Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:39 (3): 529-545 被引量:1679
标识
DOI:10.1109/36.911111
摘要

Linear spectral mixture analysis (LSMA) is a widely used technique in remote sensing to estimate abundance fractions of materials present in an image pixel. In order for an LSMA-based estimator to produce accurate amounts of material abundance, it generally requires two constraints imposed on the linear mixture model used in LSMA, which are the abundance sum-to-one constraint and the abundance nonnegativity constraint. The first constraint requires the sum of the abundance fractions of materials present in an image pixel to be one and the second imposes a constraint that these abundance fractions be nonnegative. While the first constraint is easy to deal with, the second constraint is difficult to implement since it results in a set of inequalities and can only be solved by numerical methods. Consequently, most LSMA-based methods are unconstrained and produce solutions that do not necessarily reflect the true abundance fractions of materials. In this case, they can only be used for the purposes of material detection, discrimination, and classification, but not for material quantification. The authors present a fully constrained least squares (FCLS) linear spectral mixture analysis method for material quantification. Since no closed form can be derived for this method, an efficient algorithm is developed to yield optimal solutions. In order to further apply the designed algorithm to unknown image scenes, an unsupervised least squares error (LSE)-based method is also proposed to extend the FCLS method in an unsupervised manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊凡完成签到,获得积分10
刚刚
1秒前
一亿发布了新的文献求助10
1秒前
2秒前
今后应助zsc采纳,获得10
2秒前
小洋完成签到,获得积分20
2秒前
卓卓发布了新的文献求助10
2秒前
3秒前
恩赐解脱发布了新的文献求助10
3秒前
可爱的函函应助wenying采纳,获得10
4秒前
你好这位仁兄完成签到,获得积分10
4秒前
逆熵完成签到 ,获得积分10
4秒前
wangyue发布了新的文献求助10
4秒前
气泡水发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
6秒前
彩色芷发布了新的文献求助10
6秒前
柳叶完成签到,获得积分10
6秒前
充电宝应助下水道采纳,获得10
6秒前
tony完成签到,获得积分10
6秒前
今后应助废柴采纳,获得10
7秒前
彭于晏应助小洋采纳,获得10
8秒前
proteinpurify发布了新的文献求助10
9秒前
体贴雨真完成签到,获得积分10
10秒前
10秒前
11秒前
行走的sci完成签到,获得积分10
11秒前
11秒前
嚭嚭完成签到,获得积分10
11秒前
13秒前
彩色芷完成签到,获得积分10
13秒前
min完成签到 ,获得积分10
15秒前
Ting222发布了新的文献求助10
16秒前
July完成签到,获得积分10
16秒前
星星发布了新的文献求助10
16秒前
达瓦里氏完成签到,获得积分10
16秒前
19秒前
科研通AI2S应助北林采纳,获得10
19秒前
李大白完成签到 ,获得积分10
19秒前
20秒前
mint-WANG完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Advanced Issues in Partial Least Squares Structural Equation Modeling (Second Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419