亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fitting the Generalized Pareto Distribution to Data

广义帕累托分布 分位数 估计员 数学 矩量法(概率论) 应用数学 帕累托原理 比例参数 估计理论 形状参数 统计 分布(数学) 最大似然 帕累托分布 力矩(物理) 广义矩量法 数学优化 极值理论 数学分析 经典力学 物理
作者
Enrique Castillo,Ali S. Hadi
标识
DOI:10.1080/01621459.1997.10473683
摘要

Abstract The generalized Pareto distribution (GPD) was introduced by Pickands to model exceedances over a threshold. It has since been used by many authors to model data in several fields. The GPD has a scale parameter ([sgrave] > 0) and a shape parameter (−∞ < k < ∞). The estimation of these parameters is not generally an easy problem. When k > 1, the maximum likelihood estimates do not exist, and when k is between 1/2 and 1, they may have problems. Furthermore, for k ≤ −1/2, second and higher moments do not exist, and hence both the method-of-moments (MOM) and the probability-weighted moments (PWM) estimates do not exist. Another and perhaps more serious problem with the MOM and PWM methods is that they can produce nonsensical estimates (i.e., estimates inconsistent with the observed data). In this article we propose a method for estimating the parameters and quantiles of the GPD. The estimators are well defined for all parameter values. They are also easy to compute. Some asymptotic results are provided. A simulation study is carried out to evaluate the performance of the proposed methods and to compare them with other methods suggested in the literature. The simulation results indicate that although no method is uniformly best for all the parameter values, the proposed method performs well compared to existing methods. The methods are applied to real-life data. Specific recommendations are also given. Key Words: Elemental percentile methodGeneralized extreme value distributionMaximum likelihoodMethod of momentsOrder statisticsProbability-weighted momentsQuantile estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以won完成签到,获得积分10
2秒前
安详的从筠完成签到,获得积分10
3秒前
以won发布了新的文献求助10
11秒前
Orange应助摆烂ing采纳,获得10
11秒前
19秒前
23秒前
摆烂ing完成签到,获得积分10
24秒前
Yantuobio完成签到,获得积分10
50秒前
畅快甜瓜发布了新的文献求助10
52秒前
满意的伊完成签到,获得积分10
52秒前
年鱼精完成签到 ,获得积分10
54秒前
华仔应助读书的时候采纳,获得10
56秒前
1分钟前
懵懂的莛完成签到,获得积分10
1分钟前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
2分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
2分钟前
2分钟前
yx完成签到,获得积分10
3分钟前
机智元珊完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352