Automated identification and grading system of diabetic retinopathy using deep neural networks

人工智能 计算机科学 卷积神经网络 机器学习 人工神经网络 糖尿病性视网膜病变 深度学习 分级(工程) 模式识别(心理学) 医学 糖尿病 工程类 内分泌学 土木工程
作者
Wei Zhang,Jie Zhong,Shijun Yang,Zhentao Gao,Junjie Hu,Yuanyuan Chen,Yi Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:175: 12-25 被引量:227
标识
DOI:10.1016/j.knosys.2019.03.016
摘要

Diabetic retinopathy (DR) is a major cause of human vision loss worldwide. Slowing down the progress of the disease requires early screening. However, the clinical diagnosis of DR presents a considerable challenge in low-resource settings where few ophthalmologists are available to care for all patients with diabetes. In this study, an automated DR identification and grading system called DeepDR is proposed. DeepDR directly detects the presence and severity of DR from fundus images via transfer learning and ensemble learning. It comprises a set of state-of-the-art neural networks based on combinations of popular convolutional neural networks and customised standard deep neural networks. The DeepDR system is developed by constructing a high-quality dataset of DR medical images and then labelled by clinical ophthalmologists. We further explore the relationship between the number of ideal component classifiers and the number of class labels, as well as the effects of different combinations of component classifiers on the best integration performance to construct an optimal model. We evaluate the models on the basis of validity and reliability using nine metrics. Results show that the identification model performs best with a sensitivity of 97.5%, a specificity of 97.7% and an area under the curve of 97.7%. Meanwhile, the grading model achieves a sensitivity of 98.1% and a specificity of 98.9%. On the basis of the methods above, DeepDR can detect DR satisfactorily. Experiment results indicate the importance and effectiveness of the ideal number and combinations of component classifiers in relation to model performance. DeepDR provides reproducible and consistent detection results with high sensitivity and specificity instantaneously. Hence, this work provides ophthalmologists with insights into the diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttt完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Cleo应助科研通管家采纳,获得10
1秒前
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
evvj发布了新的文献求助10
2秒前
华仔应助科研通管家采纳,获得30
2秒前
无限的灵阳完成签到 ,获得积分20
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
lawang发布了新的文献求助20
2秒前
amberzyc应助科研通管家采纳,获得10
2秒前
3秒前
Lucas应助猪猪hero采纳,获得10
3秒前
友好怜蕾发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
我是老大应助背后的书文采纳,获得10
6秒前
小杭76应助yuner采纳,获得10
6秒前
7秒前
Lester完成签到 ,获得积分10
8秒前
想发sci发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
SC武完成签到,获得积分10
11秒前
17完成签到 ,获得积分10
12秒前
汉堡包应助lilyz615采纳,获得10
12秒前
猪猪hero发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315