Automated identification and grading system of diabetic retinopathy using deep neural networks

人工智能 计算机科学 卷积神经网络 机器学习 人工神经网络 糖尿病性视网膜病变 深度学习 分级(工程) 模式识别(心理学) 医学 糖尿病 工程类 内分泌学 土木工程
作者
Wei Zhang,Jie Zhong,Shijun Yang,Zhentao Gao,Junjie Hu,Yuanyuan Chen,Yi Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:175: 12-25 被引量:227
标识
DOI:10.1016/j.knosys.2019.03.016
摘要

Diabetic retinopathy (DR) is a major cause of human vision loss worldwide. Slowing down the progress of the disease requires early screening. However, the clinical diagnosis of DR presents a considerable challenge in low-resource settings where few ophthalmologists are available to care for all patients with diabetes. In this study, an automated DR identification and grading system called DeepDR is proposed. DeepDR directly detects the presence and severity of DR from fundus images via transfer learning and ensemble learning. It comprises a set of state-of-the-art neural networks based on combinations of popular convolutional neural networks and customised standard deep neural networks. The DeepDR system is developed by constructing a high-quality dataset of DR medical images and then labelled by clinical ophthalmologists. We further explore the relationship between the number of ideal component classifiers and the number of class labels, as well as the effects of different combinations of component classifiers on the best integration performance to construct an optimal model. We evaluate the models on the basis of validity and reliability using nine metrics. Results show that the identification model performs best with a sensitivity of 97.5%, a specificity of 97.7% and an area under the curve of 97.7%. Meanwhile, the grading model achieves a sensitivity of 98.1% and a specificity of 98.9%. On the basis of the methods above, DeepDR can detect DR satisfactorily. Experiment results indicate the importance and effectiveness of the ideal number and combinations of component classifiers in relation to model performance. DeepDR provides reproducible and consistent detection results with high sensitivity and specificity instantaneously. Hence, this work provides ophthalmologists with insights into the diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助往返采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
3秒前
洁面乳发布了新的文献求助10
4秒前
希格玻色子完成签到,获得积分10
6秒前
香蕉觅云应助受伤雨南采纳,获得10
9秒前
13秒前
赘婿应助yyydd采纳,获得10
14秒前
天天发布了新的文献求助50
16秒前
17秒前
19秒前
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
在水一方应助weske采纳,获得10
23秒前
23秒前
23秒前
24秒前
liu66完成签到 ,获得积分10
24秒前
yyydd发布了新的文献求助10
25秒前
打打应助桑葚啊采纳,获得10
26秒前
受伤雨南发布了新的文献求助10
29秒前
往返发布了新的文献求助10
29秒前
BANG完成签到,获得积分10
30秒前
31秒前
Re2411发布了新的文献求助10
32秒前
hu完成签到,获得积分10
33秒前
Orange应助SL采纳,获得10
34秒前
34秒前
xie完成签到,获得积分20
36秒前
pcr163应助Master采纳,获得200
36秒前
英姑应助yyydd采纳,获得10
37秒前
Newt应助李思超采纳,获得200
38秒前
xie发布了新的文献求助10
39秒前
上官若男应助我在采纳,获得30
40秒前
顾矜应助幽默的惮采纳,获得10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182