Automated identification and grading system of diabetic retinopathy using deep neural networks

人工智能 计算机科学 卷积神经网络 机器学习 人工神经网络 糖尿病性视网膜病变 深度学习 分级(工程) 模式识别(心理学) 医学 糖尿病 工程类 内分泌学 土木工程
作者
Wei Zhang,Jie Zhong,Shijun Yang,Zhentao Gao,Junjie Hu,Yuanyuan Chen,Yi Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:175: 12-25 被引量:227
标识
DOI:10.1016/j.knosys.2019.03.016
摘要

Diabetic retinopathy (DR) is a major cause of human vision loss worldwide. Slowing down the progress of the disease requires early screening. However, the clinical diagnosis of DR presents a considerable challenge in low-resource settings where few ophthalmologists are available to care for all patients with diabetes. In this study, an automated DR identification and grading system called DeepDR is proposed. DeepDR directly detects the presence and severity of DR from fundus images via transfer learning and ensemble learning. It comprises a set of state-of-the-art neural networks based on combinations of popular convolutional neural networks and customised standard deep neural networks. The DeepDR system is developed by constructing a high-quality dataset of DR medical images and then labelled by clinical ophthalmologists. We further explore the relationship between the number of ideal component classifiers and the number of class labels, as well as the effects of different combinations of component classifiers on the best integration performance to construct an optimal model. We evaluate the models on the basis of validity and reliability using nine metrics. Results show that the identification model performs best with a sensitivity of 97.5%, a specificity of 97.7% and an area under the curve of 97.7%. Meanwhile, the grading model achieves a sensitivity of 98.1% and a specificity of 98.9%. On the basis of the methods above, DeepDR can detect DR satisfactorily. Experiment results indicate the importance and effectiveness of the ideal number and combinations of component classifiers in relation to model performance. DeepDR provides reproducible and consistent detection results with high sensitivity and specificity instantaneously. Hence, this work provides ophthalmologists with insights into the diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的丹琴完成签到 ,获得积分10
1秒前
学习使勇哥进步完成签到 ,获得积分10
2秒前
花开四海完成签到 ,获得积分10
2秒前
乐乐应助彩色的芷容采纳,获得10
3秒前
7秒前
英姑应助晓舟采纳,获得10
9秒前
忐忑的草丛完成签到,获得积分10
10秒前
KKLD发布了新的文献求助10
12秒前
积极从蕾应助橙子采纳,获得30
17秒前
18秒前
20秒前
yang发布了新的文献求助10
23秒前
25秒前
ylyao完成签到,获得积分10
28秒前
晓舟发布了新的文献求助10
28秒前
ZH完成签到 ,获得积分10
29秒前
猫咪老师应助yang采纳,获得30
31秒前
帅气的沧海完成签到 ,获得积分10
31秒前
33秒前
38秒前
支雨泽完成签到,获得积分10
39秒前
40秒前
沉默采波完成签到 ,获得积分10
40秒前
organic tirrttf完成签到,获得积分10
40秒前
博修发布了新的文献求助10
40秒前
LJHUA完成签到,获得积分10
42秒前
sxyyy发布了新的文献求助10
43秒前
燕子完成签到,获得积分10
43秒前
李健的小迷弟应助博修采纳,获得10
47秒前
48秒前
meng完成签到,获得积分10
52秒前
cata完成签到,获得积分10
53秒前
54秒前
MAKEYF完成签到 ,获得积分10
55秒前
研友_ZzrWKZ完成签到 ,获得积分10
57秒前
gg完成签到,获得积分10
59秒前
晓舟完成签到,获得积分10
1分钟前
刘刘完成签到,获得积分10
1分钟前
八硝基立方烷完成签到,获得积分0
1分钟前
寻道图强应助sxyyy采纳,获得30
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261693
求助须知:如何正确求助?哪些是违规求助? 2902535
关于积分的说明 8319862
捐赠科研通 2572345
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632305