Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter

弹性(物理) 材料科学 弹性能 内吞作用 纳米颗粒 化学物理 扩散 动力学 扁球体 纳米技术 机械 复合材料 化学 热力学 经典力学 物理 细胞 生物化学
作者
Zhiqiang Shen,Huilin Ye,Xin Yi,Ying Li
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (1): 215-228 被引量:159
标识
DOI:10.1021/acsnano.8b05340
摘要

Using coarse-grained molecular dynamics simulations, we systematically investigate the receptor-mediated endocytosis of elastic nanoparticles (NPs) with different sizes, ranging from 25 to 100 nm, and shapes, including sphere-like, oblate-like, and prolate-like. Simulation results provide clear evidence that the membrane wrapping efficiency of NPs during endocytosis is a result of competition between receptor diffusion kinetics and thermodynamic driving force. The receptor diffusion kinetics refer to the kinetics of receptor recruitment that are affected by the contact edge length between the NP and membrane. The thermodynamic driving force represents the amount of required free energy to drive NPs into a cell. Under the volume constraint of elastic NPs, the soft spherical NPs are found to have similar contact edge lengths to rigid ones and to less efficiently be fully wrapped due to their elastic deformation. Moreover, the difference in wrapping efficiency between soft and rigid spherical NPs increases with their sizes, due to the increment of their elastic energy change. Furthermore, because of its prominent large contact edge length, the oblate ellipsoid is found to be the least sensitive geometry to the variation in NP's elasticity among the spherical, prolate, and oblate shapes during the membrane wrapping. In addition, simulation results indicate that conflicting experimental observations on the efficiency of cellular uptake of elastic NPs could be caused by their different mechanical properties. Our simulations provide a detailed mechanistic understanding about the influence of NPs' size, shape, and elasticity on their membrane wrapping efficiency, which serves as a rational guidance for the design of NP-based drug carriers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大模型应助珊明治采纳,获得10
2秒前
Sene完成签到,获得积分10
2秒前
4秒前
李爱国应助AA18236931952采纳,获得10
4秒前
ll完成签到 ,获得积分10
4秒前
4秒前
羊小受完成签到,获得积分10
5秒前
桐桐应助zhangxi采纳,获得10
5秒前
gzsy完成签到,获得积分10
5秒前
杰瑞完成签到,获得积分20
5秒前
NiL发布了新的文献求助10
5秒前
海绵宝宝完成签到 ,获得积分10
5秒前
5秒前
自信大白菜真实的钥匙完成签到,获得积分10
6秒前
Smile完成签到,获得积分10
6秒前
内向汽车完成签到,获得积分10
7秒前
Akim应助兜兜采纳,获得20
7秒前
PENGDOCTOR发布了新的文献求助10
8秒前
五山第一院士完成签到,获得积分10
8秒前
QIQI发布了新的文献求助10
8秒前
无尘完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
orange完成签到,获得积分10
11秒前
xianyu完成签到,获得积分10
11秒前
刘铠瑜发布了新的文献求助10
12秒前
ag完成签到,获得积分10
13秒前
li完成签到,获得积分10
14秒前
15秒前
NexusExplorer应助小路采纳,获得10
15秒前
15秒前
哈哈完成签到 ,获得积分10
16秒前
PENGDOCTOR完成签到,获得积分10
16秒前
任性行天发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685896
关于积分的说明 14840412
捐赠科研通 4675610
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144