High-Yield Method To Fabricate and Functionalize DNA Nanoparticles from the Products of Rolling Circle Amplification

滚动圆复制 纳米技术 材料科学 纳米颗粒 产量(工程) DNA 化学 复合材料 DNA聚合酶 生物化学
作者
Xuexia Yuan,Fan Xiao,Haoran Zhao,Yishun Huang,Chen Shao,Yossi Weizmann,Leilei Tian
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:1 (2): 511-519 被引量:16
标识
DOI:10.1021/acsabm.8b00238
摘要

DNA condensation is a facile method to construct DNA nanostructure with a high biostability and low cost, which is mainly used in DNA separation and gene transfection. The recent emerging condensed DNA nanostructures from the rolling circle amplification (RCA), i.e., the complexes between RCA products and magnesium pyrophosphate (RCA–MgPPi), have quickly become attractive biomedical materials with broad application potential because they combine the advantages of the designable and high-throughput isothermal amplification technique and the high stability of DNA condensation structures. However, we find that only approximately 10% of RCA products can be condensed after an RCA reaction, which limits the practical application of the RCA–MgPPi nanostructures. Therefore, in this paper, we investigate how to control the condensation efficiency of RCA-synthesized DNAs in depth. The very long RCA products, which show high charge densities, can be efficiently condensed by an excessive amount of Mg2+ to form RCA–MgPPi nanostructures at a yield approaching 100%. Additionally, the new condensation approach is general and is not limited to the RCA products, which can be applied to other polymeric DNAs. These RCA–MgPPi nanoparticles exhibit a high biostability and low toxicity, in addition, which can be efficiently functionalized with foreign components to create hierarchical properties. Finally, as a proof of concept, based on RCA–MgPPi nanostructures, a ratiometric fluorescence sensor system has been constructed and demonstrated to be an efficient lysosomal pH tracker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
sissi应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
古的古的应助single采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
走心完成签到,获得积分20
5秒前
邓帆完成签到,获得积分10
5秒前
海阔光明完成签到,获得积分10
5秒前
5秒前
花开富贵完成签到,获得积分10
6秒前
蜗牛星星完成签到,获得积分10
6秒前
ghost发布了新的文献求助10
6秒前
啖肉饶舌完成签到,获得积分10
7秒前
FashionBoy应助KK采纳,获得20
7秒前
加菲丰丰应助魔幻哈密瓜采纳,获得20
7秒前
鱼鱼发布了新的文献求助20
7秒前
缘来如风发布了新的文献求助10
8秒前
贪玩的月饼完成签到 ,获得积分10
8秒前
9秒前
HHM完成签到,获得积分10
9秒前
9秒前
9秒前
DDL发布了新的文献求助10
9秒前
10秒前
ruman完成签到,获得积分10
10秒前
天天快乐应助西瓜头采纳,获得10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685