Wavelet Convolutional Neural Networks

卷积神经网络 小波 计算机科学 人工智能 模式识别(心理学) 小波变换 多分辨率分析 上下文图像分类 图像(数学) 离散小波变换
作者
Shin Fujieda,Kohei Takayama,Toshiya Hachisuka
出处
期刊:Cornell University - arXiv 被引量:101
标识
DOI:10.48550/arxiv.1805.08620
摘要

Spatial and spectral approaches are two major approaches for image processing tasks such as image classification and object recognition. Among many such algorithms, convolutional neural networks (CNNs) have recently achieved significant performance improvement in many challenging tasks. Since CNNs process images directly in the spatial domain, they are essentially spatial approaches. Given that spatial and spectral approaches are known to have different characteristics, it will be interesting to incorporate a spectral approach into CNNs. We propose a novel CNN architecture, wavelet CNNs, which combines a multiresolution analysis and CNNs into one model. Our insight is that a CNN can be viewed as a limited form of a multiresolution analysis. Based on this insight, we supplement missing parts of the multiresolution analysis via wavelet transform and integrate them as additional components in the entire architecture. Wavelet CNNs allow us to utilize spectral information which is mostly lost in conventional CNNs but useful in most image processing tasks. We evaluate the practical performance of wavelet CNNs on texture classification and image annotation. The experiments show that wavelet CNNs can achieve better accuracy in both tasks than existing models while having significantly fewer parameters than conventional CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偲偲偲偲偲完成签到,获得积分10
1秒前
lalala应助耳冉采纳,获得10
1秒前
程程程完成签到,获得积分10
1秒前
李珂完成签到,获得积分10
2秒前
滴滴答答发布了新的文献求助10
2秒前
dew应助昏睡的蟠桃采纳,获得10
3秒前
4秒前
建国发布了新的文献求助10
4秒前
共享精神应助苏苏采纳,获得10
4秒前
4秒前
白晨发布了新的文献求助10
5秒前
wlscj举报wuyanzu求助涉嫌违规
5秒前
hhhx发布了新的文献求助10
6秒前
6秒前
科目三应助叶赛文采纳,获得10
7秒前
善学以致用应助小李博士采纳,获得10
8秒前
清爽的忆梅完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
飞快的羊青完成签到,获得积分10
11秒前
33完成签到 ,获得积分10
11秒前
redking完成签到,获得积分10
12秒前
我无线用咯完成签到,获得积分10
12秒前
叶十七完成签到,获得积分10
12秒前
12秒前
ding应助xh采纳,获得10
13秒前
Zhuo完成签到 ,获得积分10
15秒前
CY完成签到,获得积分10
15秒前
浮游应助苏苏采纳,获得10
16秒前
16秒前
xxfsx应助ming123ah采纳,获得10
16秒前
18秒前
19秒前
沉静的曼荷完成签到,获得积分20
19秒前
万能图书馆应助Dr.Paper采纳,获得20
20秒前
果蔬锵完成签到,获得积分10
20秒前
22秒前
替代发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272683
求助须知:如何正确求助?哪些是违规求助? 4429853
关于积分的说明 13790177
捐赠科研通 4308344
什么是DOI,文献DOI怎么找? 2364197
邀请新用户注册赠送积分活动 1359798
关于科研通互助平台的介绍 1322761