Wavelet Convolutional Neural Networks

卷积神经网络 小波 计算机科学 人工智能 模式识别(心理学) 小波变换 多分辨率分析 上下文图像分类 图像(数学) 离散小波变换
作者
Shin Fujieda,Kohei Takayama,Toshiya Hachisuka
出处
期刊:Cornell University - arXiv 被引量:101
标识
DOI:10.48550/arxiv.1805.08620
摘要

Spatial and spectral approaches are two major approaches for image processing tasks such as image classification and object recognition. Among many such algorithms, convolutional neural networks (CNNs) have recently achieved significant performance improvement in many challenging tasks. Since CNNs process images directly in the spatial domain, they are essentially spatial approaches. Given that spatial and spectral approaches are known to have different characteristics, it will be interesting to incorporate a spectral approach into CNNs. We propose a novel CNN architecture, wavelet CNNs, which combines a multiresolution analysis and CNNs into one model. Our insight is that a CNN can be viewed as a limited form of a multiresolution analysis. Based on this insight, we supplement missing parts of the multiresolution analysis via wavelet transform and integrate them as additional components in the entire architecture. Wavelet CNNs allow us to utilize spectral information which is mostly lost in conventional CNNs but useful in most image processing tasks. We evaluate the practical performance of wavelet CNNs on texture classification and image annotation. The experiments show that wavelet CNNs can achieve better accuracy in both tasks than existing models while having significantly fewer parameters than conventional CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
捏捏捏发布了新的文献求助10
1秒前
1秒前
qiuwuji发布了新的文献求助10
1秒前
ming完成签到,获得积分10
1秒前
跳跃凡完成签到,获得积分20
2秒前
2秒前
2秒前
自由的冰夏完成签到,获得积分10
3秒前
3秒前
3秒前
2224536发布了新的文献求助10
4秒前
超级水壶发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助悦耳醉香采纳,获得10
4秒前
深情的芝麻完成签到,获得积分10
5秒前
风趣以云完成签到,获得积分10
5秒前
cza发布了新的文献求助10
5秒前
老杨发布了新的文献求助10
5秒前
娟娟加油发布了新的文献求助10
5秒前
6秒前
taipingyang完成签到,获得积分10
6秒前
Tanyang完成签到 ,获得积分10
6秒前
64473791发布了新的文献求助10
6秒前
6秒前
Annnn发布了新的文献求助10
6秒前
7秒前
董浩楠发布了新的文献求助10
7秒前
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得80
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688