Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton

微管 微管蛋白 生物 长春花 细胞生物学 紫杉醇 细胞骨架 细胞内 微管相关蛋白 生物化学 细胞 癌症 遗传学 药理学
作者
Michel O. Steinmetz,A.E. Prota
出处
期刊:Trends in Cell Biology [Elsevier]
卷期号:28 (10): 776-792 被引量:402
标识
DOI:10.1016/j.tcb.2018.05.001
摘要

Structural biology has allowed the identification and detailed characterization of six distinct ligand-binding sites on tubulin. Two sites are targeted by microtubule-stabilizing agents (MSAs); four sites are targeted by microtubule-destabilizing agents (MDAs). MSAs stabilize microtubules by strengthening lateral and/or longitudinal tubulin contacts in microtubules. MDAs destabilize microtubules by either inhibiting the formation of native tubulin contacts or by hindering the curved-to-straight conformational change of tubulin accompanying microtubule formation. Different types of anticancer agents that were initially developed against kinases were found to bind also to tubulin as an off-target. Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents. Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents. a biochemical process leading to cell death. the process by which proteins transmit the effect of binding at one site to another, often distal, site. complex molecules composed of an antibody linked to a cytotoxic agent, which are used in targeted anticancer therapy. transmission EM carried out at cryogenic temperatures. The method allows the structural analysis of vitrified macromolecules at high resolution. a complex network of interlinked protein filaments that extend throughout the cytoplasm of a cell, from the nucleus to the plasma membrane. switching behavior between growth and shrinkage of microtubules. a discontinuity in the helical lattice of some microtubules where an α-tubulin subunit from one protofilament contacts a β-tubulin subunit of the neighboring protofilament. the slow-growing end of a microtubule exposing α-tubulin subunits. microtubule-based cytoskeletal structure of eukaryotic cells that forms during mitosis to separate and distribute sister chromatids equally between daughter cells. the phase of the cell cycle when replicated chromosomes are distributed between daughter cells. enzymes that catalyze the transfer of phosphate groups from ATP to a specific substrate. the fast-growing end of a microtubule exposing β-tubulin subunits. an extremely powerful source of X-rays that are produced by high-energy electrons as they move along a circular path. method to determine the atomic structure of macromolecules in a crystal. The atoms in the crystal cause a beam of incident X-rays to diffract in many specific directions, and this can be exploited to produce a 3D picture of the density of electrons of the macromolecules within the crystal. ultra-high-energy X-ray laser consisting of ultra-high-speed electrons moving freely through a magnetic structure. The methods can be used to perform, for example, time-resolved crystallography experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任我行发布了新的文献求助10
刚刚
潘广瑞完成签到,获得积分10
1秒前
1秒前
科研修沟发布了新的文献求助10
2秒前
故事的小黄花完成签到,获得积分10
4秒前
领导范儿应助Tperm采纳,获得20
4秒前
huntme完成签到,获得积分10
5秒前
TATA发布了新的文献求助10
5秒前
6秒前
自由滑大王完成签到 ,获得积分10
8秒前
CodeCraft应助彩色的夏青采纳,获得10
8秒前
李洁完成签到,获得积分10
10秒前
CodeCraft应助王晓茜采纳,获得10
12秒前
12秒前
12秒前
fang完成签到,获得积分10
12秒前
Orange应助俭朴的一曲采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
香蕉觅云应助小马采纳,获得10
17秒前
17秒前
英俊的铭应助瀅瀅采纳,获得10
17秒前
17秒前
Jasper应助海潮飞翔采纳,获得10
18秒前
18秒前
...完成签到,获得积分10
18秒前
ZeKaWa应助堡主采纳,获得10
18秒前
Hide杰完成签到,获得积分10
19秒前
19秒前
妮妮发布了新的文献求助10
20秒前
20秒前
bob完成签到,获得积分10
21秒前
21秒前
小6发布了新的文献求助10
21秒前
orixero应助坚定剑成采纳,获得10
22秒前
22秒前
斯文败类应助muyi采纳,获得10
23秒前
PP完成签到,获得积分10
23秒前
温柔雅蕊完成签到,获得积分10
23秒前
liuf发布了新的文献求助10
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655