Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton

微管 微管蛋白 生物 长春花 细胞生物学 紫杉醇 细胞骨架 计算生物学 生物化学 细胞 癌症 遗传学 药理学
作者
Michel O. Steinmetz,A.E. Prota
出处
期刊:Trends in Cell Biology [Elsevier]
卷期号:28 (10): 776-792 被引量:366
标识
DOI:10.1016/j.tcb.2018.05.001
摘要

Structural biology has allowed the identification and detailed characterization of six distinct ligand-binding sites on tubulin. Two sites are targeted by microtubule-stabilizing agents (MSAs); four sites are targeted by microtubule-destabilizing agents (MDAs). MSAs stabilize microtubules by strengthening lateral and/or longitudinal tubulin contacts in microtubules. MDAs destabilize microtubules by either inhibiting the formation of native tubulin contacts or by hindering the curved-to-straight conformational change of tubulin accompanying microtubule formation. Different types of anticancer agents that were initially developed against kinases were found to bind also to tubulin as an off-target. Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents. Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents. a biochemical process leading to cell death. the process by which proteins transmit the effect of binding at one site to another, often distal, site. complex molecules composed of an antibody linked to a cytotoxic agent, which are used in targeted anticancer therapy. transmission EM carried out at cryogenic temperatures. The method allows the structural analysis of vitrified macromolecules at high resolution. a complex network of interlinked protein filaments that extend throughout the cytoplasm of a cell, from the nucleus to the plasma membrane. switching behavior between growth and shrinkage of microtubules. a discontinuity in the helical lattice of some microtubules where an α-tubulin subunit from one protofilament contacts a β-tubulin subunit of the neighboring protofilament. the slow-growing end of a microtubule exposing α-tubulin subunits. microtubule-based cytoskeletal structure of eukaryotic cells that forms during mitosis to separate and distribute sister chromatids equally between daughter cells. the phase of the cell cycle when replicated chromosomes are distributed between daughter cells. enzymes that catalyze the transfer of phosphate groups from ATP to a specific substrate. the fast-growing end of a microtubule exposing β-tubulin subunits. an extremely powerful source of X-rays that are produced by high-energy electrons as they move along a circular path. method to determine the atomic structure of macromolecules in a crystal. The atoms in the crystal cause a beam of incident X-rays to diffract in many specific directions, and this can be exploited to produce a 3D picture of the density of electrons of the macromolecules within the crystal. ultra-high-energy X-ray laser consisting of ultra-high-speed electrons moving freely through a magnetic structure. The methods can be used to perform, for example, time-resolved crystallography experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助酷酷妙梦采纳,获得10
刚刚
1秒前
小葵花发布了新的文献求助10
1秒前
YZzzJ发布了新的文献求助10
2秒前
刘依梦完成签到 ,获得积分10
2秒前
cwy完成签到,获得积分10
2秒前
xiayu完成签到 ,获得积分10
3秒前
辉辉028完成签到 ,获得积分10
4秒前
czt发布了新的文献求助10
4秒前
现实的青亦完成签到,获得积分10
5秒前
金刚小叮当完成签到,获得积分10
5秒前
zhu完成签到,获得积分10
5秒前
好困应助袁来如此采纳,获得20
6秒前
6秒前
7秒前
伶俐问薇完成签到,获得积分10
7秒前
7秒前
天天快乐应助梦芝采纳,获得10
7秒前
彭于晏应助猪娃不是猪采纳,获得10
8秒前
读心理学导致的完成签到,获得积分10
8秒前
时生111完成签到 ,获得积分10
8秒前
8秒前
NexusExplorer应助Shandongdaxiu采纳,获得10
8秒前
研友_ZeqAxZ完成签到,获得积分10
8秒前
9秒前
消消消消气完成签到 ,获得积分10
9秒前
Edward发布了新的文献求助10
10秒前
姜彦乔完成签到 ,获得积分10
10秒前
纯真硬币发布了新的文献求助10
11秒前
YDSL完成签到,获得积分10
11秒前
可爱的函函应助xr采纳,获得10
12秒前
马某某某某某完成签到,获得积分20
12秒前
wmy发布了新的文献求助10
12秒前
酷酷妙梦发布了新的文献求助10
13秒前
苦咖啡行僧完成签到 ,获得积分10
14秒前
15秒前
whh123完成签到 ,获得积分10
16秒前
生生发布了新的文献求助20
17秒前
法克西瓜汁完成签到,获得积分10
17秒前
科研民工lxh完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384