Term Extraction from Chinese Texts Without Word Segmentation

计算机科学 自然语言处理 判决 人工智能 分割 领域(数学分析) 排名(信息检索) 对比度(视觉) 词(群论) 精确性和召回率 期限(时间) 文本分割 符号(正式) 信息抽取 集合(抽象数据类型) 情报检索 模式识别(心理学) 数学 数学分析 物理 程序设计语言 量子力学 几何学
作者
Chuqiao Yu,Ma Pengyu,I.A. Bessmertny,А.В. Платонов,E.A. Poleschuk
标识
DOI:10.1109/icaict.2017.8687047
摘要

The paper is dedicated to the problem of automatic term extraction from natural language texts. One of the first steps in this topic is building a domain thesaurus. Well approved methods of terms extraction based on word frequencies exist for alphabetic languages. Direct application of these methods for hieroglyphic texts is challenged because of missing spaces between words. The sentence segmentation task in hieroglyphic languages is usually solved by dictionaries or by statistical methods, particularly, by means of a mutual information approach. Sentence segmentation methods, as well as methods of terms extraction, separately, do not reach 100 percent precision and recall, and their combination just increases the number of errors. The aim of this work is to improve recall and precision of domain terms extraction from hieroglyphic texts. The proposed method is to identify repetitions of the two, three or four symbol sequences in each sentence and correlation of occurrence frequencies for these sequences in the target domain and contrast documents collection. According to the research, it was stated that a trivial ranking of all possible symbol sequences allows extracting only frequently used terms. Filtering of symbol sequences by their ratio of frequencies in the domain and in the contrast collection gave the possibility to extract reliably frequently used terms and to find satisfactory rare domain terms. Some results of terms extraction for the “Geology” domain from a Chinese text are presented in this paper. A set of articles from the newspaper “Renmin Ribao” was used as a contrast collection and some satisfactory results were obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Jello采纳,获得10
1秒前
学呀学发布了新的文献求助10
2秒前
2秒前
CodeCraft应助zn315315采纳,获得10
3秒前
舒服的灰狼完成签到 ,获得积分10
3秒前
浑天与发布了新的文献求助10
3秒前
无花果应助清茗采纳,获得10
4秒前
Ngu完成签到,获得积分10
5秒前
李爱国应助刘洋采纳,获得10
5秒前
理想三寻发布了新的文献求助10
5秒前
yoyo发布了新的文献求助10
6秒前
flash完成签到,获得积分10
6秒前
666关闭了666文献求助
8秒前
Min发布了新的文献求助10
8秒前
Beyond完成签到,获得积分10
10秒前
曦臐应助浑天与采纳,获得30
10秒前
丰知然应助韦涔采纳,获得10
10秒前
耍酷寻双完成签到 ,获得积分10
11秒前
聪慧语山完成签到 ,获得积分10
12秒前
12秒前
鉴定为学计算学的完成签到,获得积分10
13秒前
bluelemon发布了新的文献求助10
14秒前
Lyu完成签到,获得积分10
15秒前
云瑾应助咿呀咿呀采纳,获得10
16秒前
翟翟发布了新的文献求助10
17秒前
18秒前
敏感的百招完成签到,获得积分10
18秒前
zsyzxb完成签到,获得积分10
18秒前
orixero应助Lyu采纳,获得10
19秒前
superLmy完成签到 ,获得积分10
20秒前
Lucas应助敏感的百招采纳,获得200
22秒前
22秒前
bluelemon完成签到,获得积分10
22秒前
22秒前
vv完成签到 ,获得积分10
22秒前
思源应助ltft采纳,获得10
23秒前
谦让月饼完成签到 ,获得积分10
23秒前
笨笨的白梅完成签到,获得积分10
24秒前
24秒前
lsrlsr发布了新的文献求助10
25秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288906
求助须知:如何正确求助?哪些是违规求助? 2926144
关于积分的说明 8425507
捐赠科研通 2597185
什么是DOI,文献DOI怎么找? 1417033
科研通“疑难数据库(出版商)”最低求助积分说明 659592
邀请新用户注册赠送积分活动 642000