Term Extraction from Chinese Texts Without Word Segmentation

计算机科学 自然语言处理 判决 人工智能 分割 领域(数学分析) 排名(信息检索) 对比度(视觉) 词(群论) 精确性和召回率 期限(时间) 文本分割 符号(正式) 信息抽取 集合(抽象数据类型) 情报检索 模式识别(心理学) 数学 数学分析 物理 程序设计语言 量子力学 几何学
作者
Chuqiao Yu,Ma Pengyu,I.A. Bessmertny,А.В. Платонов,E.A. Poleschuk
标识
DOI:10.1109/icaict.2017.8687047
摘要

The paper is dedicated to the problem of automatic term extraction from natural language texts. One of the first steps in this topic is building a domain thesaurus. Well approved methods of terms extraction based on word frequencies exist for alphabetic languages. Direct application of these methods for hieroglyphic texts is challenged because of missing spaces between words. The sentence segmentation task in hieroglyphic languages is usually solved by dictionaries or by statistical methods, particularly, by means of a mutual information approach. Sentence segmentation methods, as well as methods of terms extraction, separately, do not reach 100 percent precision and recall, and their combination just increases the number of errors. The aim of this work is to improve recall and precision of domain terms extraction from hieroglyphic texts. The proposed method is to identify repetitions of the two, three or four symbol sequences in each sentence and correlation of occurrence frequencies for these sequences in the target domain and contrast documents collection. According to the research, it was stated that a trivial ranking of all possible symbol sequences allows extracting only frequently used terms. Filtering of symbol sequences by their ratio of frequencies in the domain and in the contrast collection gave the possibility to extract reliably frequently used terms and to find satisfactory rare domain terms. Some results of terms extraction for the “Geology” domain from a Chinese text are presented in this paper. A set of articles from the newspaper “Renmin Ribao” was used as a contrast collection and some satisfactory results were obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助聪慧的正豪采纳,获得10
2秒前
3秒前
整齐荟完成签到,获得积分10
3秒前
领导范儿应助威武的元冬采纳,获得30
7秒前
7秒前
junjun2011完成签到,获得积分10
9秒前
Dasha完成签到,获得积分10
9秒前
充电宝应助puzi采纳,获得10
11秒前
LiuLiu发布了新的文献求助10
12秒前
深情安青应助昏睡的绿海采纳,获得10
12秒前
13秒前
大大的西瓜完成签到 ,获得积分10
17秒前
华仔应助XYN1采纳,获得10
18秒前
18秒前
A阿澍发布了新的文献求助30
18秒前
丘比特应助TMX采纳,获得10
20秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
无奈满天发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
30秒前
31秒前
zhou269完成签到,获得积分10
33秒前
在逃公主许翠花完成签到,获得积分10
33秒前
littleblack发布了新的文献求助10
34秒前
TMX发布了新的文献求助10
34秒前
34秒前
DaiTing发布了新的文献求助10
34秒前
35秒前
简单点发布了新的文献求助10
35秒前
华仔应助无奈满天采纳,获得10
35秒前
fjejj发布了新的文献求助10
36秒前
sisi发布了新的文献求助10
37秒前
华仔完成签到,获得积分10
39秒前
华仔应助特梅头采纳,获得10
41秒前
42秒前
无奈满天完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052