Enhancing the Hybrid BCI Performance With the Common Frequency Pattern in Dual-Channel EEG

脑-机接口 计算机科学 脑电图 模式识别(心理学) 支持向量机 运动表象 频道(广播) 人工智能 分类器(UML) 特征提取 接口(物质) 语音识别 精神科 并行计算 气泡 最大气泡压力法 计算机网络 心理学
作者
Li-Wei Ko,Oleksii Komarov,Shih-Chuan Lin
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 1360-1369 被引量:23
标识
DOI:10.1109/tnsre.2019.2920748
摘要

The brain-computer interface establishes a direct communication pathway between the human brain and an external device by recognizing specific patterns in cortical activities. The principle of hybridization stands for combining at least two different BCI modalities into a single interface with the aim of improving the information transfer rate by increasing the recognition accuracy and number of choices available for the user. This study proposes a simultaneous hybrid BCI system that recognizes the motor imagery (MI) and the steady-state visually evoked potentials (SSVEP) using the EEG signals from a dual-channel EEG setting with sensors placed over the central area (C3 and C4 channels). The data processing implements a supervised optimization algorithm for the feature extraction, named the common frequency pattern, which finds the optimal spectral filter that maximizes the separability of the data by classes. The experiment compares the classification accuracy in a two-class task using the MI, SSVEP and hybrid approaches on seventeen healthy 18-29 years old subjects with various dual-channel setups and complete set of thirty EEG electrodes. The designed system reaches a high accuracy of 97.4 ± 1.1% in the hybrid task using the C3-C4 channel configuration, which is marginally lower than the 98.8 ± 0.5% accuracy achieved with the complete set of channels while applying the support vector classifier; in the plain SSVEP task the accuracy drops from 91.3 ± 3.9% to 86.0 ± 2.5% while moving from the occipital to central area under the dual-channel condition. The results demonstrate that by combining the principles of hybridization and data-driven spectral filtering for the feature selection it is feasible to compensate a lack of spatial information and implement the proposed BCI using a portable few channel EEG device even under sub-optimal conditions for the sensors placement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助易二十采纳,获得10
刚刚
2秒前
2秒前
桐桐应助轻松绿旋采纳,获得10
4秒前
传奇3应助syyw2021采纳,获得30
5秒前
小鲤鱼在睡觉完成签到,获得积分10
6秒前
信仰xy完成签到,获得积分10
6秒前
wdb发布了新的文献求助10
9秒前
Xin发布了新的文献求助10
10秒前
ljl86400完成签到,获得积分10
12秒前
领导范儿应助娇气的背包采纳,获得10
12秒前
15秒前
16秒前
你猜是什么昵称完成签到 ,获得积分10
16秒前
777发布了新的文献求助10
19秒前
19秒前
背书强发布了新的文献求助10
20秒前
6633发布了新的文献求助10
20秒前
哈哈完成签到 ,获得积分10
21秒前
旺仔同学发布了新的文献求助10
22秒前
22秒前
杨雨帆发布了新的文献求助20
23秒前
曲初雪完成签到,获得积分10
24秒前
kevin完成签到,获得积分10
24秒前
高兴元绿发布了新的文献求助10
24秒前
慕卉发布了新的文献求助30
25秒前
Xiaoxiannv完成签到,获得积分10
26秒前
27秒前
hebhm发布了新的文献求助10
27秒前
cdercder应助陶醉毛豆采纳,获得30
28秒前
卡卡发布了新的文献求助10
30秒前
赘婿应助777采纳,获得10
32秒前
32秒前
33秒前
小二郎应助无心的土豆采纳,获得10
34秒前
kelite完成签到 ,获得积分10
34秒前
赘婿应助高兴元绿采纳,获得10
35秒前
粉色发布了新的文献求助10
37秒前
uutt发布了新的文献求助150
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967