量子点
惰性
化学
壳体(结构)
纳米技术
光电子学
材料科学
复合材料
有机化学
作者
Yun Tian,Chenqi Xin,Zhenlan Fang,Xiaodie Fang,J. Zhou,Hai‐Dong Yu,Lin Li,Qiang Ju
标识
DOI:10.1016/j.aca.2018.09.043
摘要
Quantum dots (QDs), drawing large attention during the past three decades, have been extensively applied in lighting, display, and biodetection. However, the mechanism for their ability in biodetection, especially in recognizing toxic metal ions, has scarcely been explored. In this work, three sets of CuInS2@ZnS QDs systems with inert shell thickness varying from 1.1 to 4.1 nm have been performed. As the shrinkage of inert shell, QDs not only show red-shift emission but also demonstrate more sensitive and higher response to the added Cd2+. The thin-shell CuInS2@ZnS QDs could detect 0.91 nM Cd2+, and could further detect 4.36 nM Cd2+ when integrated with paper-based platform. Importantly, thin-shell CuInS2@ZnS QDs combined with paper-based platform can detect 105.86 nM Cd2+ even just applying mobile phone as detector and hand-held UV lamp as excitation resource. The mechanism is further proposed based on the energy transfer routes. The thin inert shell can not completely protect the emissive core away from the surface defects, but it can neither exclude the energy transfer from the surface to the emissive core. The added Cd2+ would facilitate the formation of CdS on the surface of QDs, which not only can alleviate the surface defects but also can transfer energy to emissive CuInS2, thus thinning the thickness of inert shell greatly boost the detection sensitivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI