Thinning shell thickness of CuInS2@ZnS quantum dots to boost detection sensitivity

量子点 惰性 化学 壳体(结构) 纳米技术 光电子学 材料科学 复合材料 有机化学
作者
Yun Tian,Chenqi Xin,Zhenlan Fang,Xiaodie Fang,J. Zhou,Hai‐Dong Yu,Lin Li,Qiang Ju
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1047: 124-130 被引量:12
标识
DOI:10.1016/j.aca.2018.09.043
摘要

Quantum dots (QDs), drawing large attention during the past three decades, have been extensively applied in lighting, display, and biodetection. However, the mechanism for their ability in biodetection, especially in recognizing toxic metal ions, has scarcely been explored. In this work, three sets of CuInS2@ZnS QDs systems with inert shell thickness varying from 1.1 to 4.1 nm have been performed. As the shrinkage of inert shell, QDs not only show red-shift emission but also demonstrate more sensitive and higher response to the added Cd2+. The thin-shell CuInS2@ZnS QDs could detect 0.91 nM Cd2+, and could further detect 4.36 nM Cd2+ when integrated with paper-based platform. Importantly, thin-shell CuInS2@ZnS QDs combined with paper-based platform can detect 105.86 nM Cd2+ even just applying mobile phone as detector and hand-held UV lamp as excitation resource. The mechanism is further proposed based on the energy transfer routes. The thin inert shell can not completely protect the emissive core away from the surface defects, but it can neither exclude the energy transfer from the surface to the emissive core. The added Cd2+ would facilitate the formation of CdS on the surface of QDs, which not only can alleviate the surface defects but also can transfer energy to emissive CuInS2, thus thinning the thickness of inert shell greatly boost the detection sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡乐巧发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
科研通AI2S应助11111采纳,获得10
2秒前
chen发布了新的文献求助10
2秒前
NexusExplorer应助11111采纳,获得10
2秒前
爆米花应助科研顺荔采纳,获得10
2秒前
和谐的冰岚完成签到,获得积分10
2秒前
研友_VZG7GZ应助十四吉采纳,获得10
3秒前
Duan发布了新的文献求助10
4秒前
4秒前
饱满的尔云完成签到,获得积分10
4秒前
无情耷完成签到 ,获得积分10
5秒前
5秒前
5秒前
chen完成签到,获得积分10
6秒前
6秒前
毛豆发布了新的文献求助10
7秒前
闪闪烧鹅完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
wanci应助超级语风采纳,获得10
8秒前
兽医12138完成签到 ,获得积分10
8秒前
长vefvj发布了新的文献求助30
8秒前
GX2023发布了新的文献求助30
8秒前
9秒前
10秒前
慕青应助happy123采纳,获得10
10秒前
JasonSun发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
悲凉的老虎完成签到,获得积分10
12秒前
科研狗111应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053450
求助须知:如何正确求助?哪些是违规求助? 2710716
关于积分的说明 7423001
捐赠科研通 2355188
什么是DOI,文献DOI怎么找? 1246891
科研通“疑难数据库(出版商)”最低求助积分说明 606177
版权声明 595975