Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology

电池(电) 计算机科学 可靠性(半导体) 数据预处理 荷电状态 预处理器 瓶颈 算法 数据挖掘 人工智能 嵌入式系统 功率(物理) 量子力学 物理
作者
Shuangqi Li,Hongwen He,Jianwei Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:242: 1259-1273 被引量:115
标识
DOI:10.1016/j.apenergy.2019.03.154
摘要

Abstract As one of the bottleneck technologies of electric vehicles (EVs), the battery hosts complex and hardly observable internal chemical reactions. Therefore, a precise mathematical model is crucial for the battery management system (BMS) to ensure the secure and stable operation of the battery in a multi-variable environment. First, a Cloud-based BMS (C-BMS) is established based on a database containing complete battery status information. Next, a data cleaning method based on machine learning is applied to the big data of batteries. Meanwhile, to improve the model stability under dynamic conditions, an F-divergence-based data distribution quality assessment method and a sampling-based data preprocess method is designed. Then, a lithium-ion battery temperature-dependent model is built based on Stacked Denoising Autoencoders- Extreme Learning Machine (SDAE-ELM) algorithm, and a new training method combined with data preprocessing is also proposed to improve the model accuracy. Finally, to improve reliability, a conjunction working mode between the C-BMS and the BMS in vehicles (V-BMS) is also proposed, providing as an applied case of the model. Using the battery data extracted from electric buses, the effectiveness and accuracy of the model are validated. The error of the estimated battery terminal voltage is within 2%, and the error of the estimated State of Charge (SoC) is within 3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aniee完成签到,获得积分10
1秒前
文艺雁菱完成签到,获得积分10
1秒前
Zhengyn发布了新的文献求助10
1秒前
CipherSage应助du采纳,获得10
2秒前
阿迪完成签到 ,获得积分10
2秒前
2秒前
跳跃的太君完成签到,获得积分10
2秒前
NexusExplorer应助wu61采纳,获得10
3秒前
hbgsns完成签到,获得积分10
3秒前
chi发布了新的文献求助10
3秒前
3秒前
飒saus完成签到,获得积分10
4秒前
niuya完成签到,获得积分10
4秒前
4秒前
cong完成签到,获得积分10
5秒前
纪洪森完成签到,获得积分10
5秒前
小欢完成签到,获得积分10
6秒前
天地一沙鸥完成签到 ,获得积分10
6秒前
orixero应助zxc采纳,获得10
6秒前
longfang完成签到,获得积分10
6秒前
6秒前
高高从霜完成签到 ,获得积分10
7秒前
危机的觅风完成签到 ,获得积分10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Yongander发布了新的文献求助10
7秒前
阿凡发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
尉迟希望应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
瑞仔完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
aaaa完成签到,获得积分10
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
尉迟希望应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189220
求助须知:如何正确求助?哪些是违规求助? 4373376
关于积分的说明 13616425
捐赠科研通 4226879
什么是DOI,文献DOI怎么找? 2318410
邀请新用户注册赠送积分活动 1317081
关于科研通互助平台的介绍 1266938