Engineering Tunable Broadband Near‐Infrared Emission in Transparent Rare‐Earth Doped Nanocrystals‐in‐Glass Composites via a Bottom‐Up Strategy

材料科学 光电子学 宽带 发光 离子 纳米尺度 兴奋剂 纳米晶 猝灭(荧光) 红外线的 纳米技术 光致发光 光子学 光学 荧光 物理 量子力学
作者
Qiwen Pan,Zhenlu Cai,Yerong Yang,Dandan Yang,Shiliang Kang,Zhi Chen,Jianrong Qiu,Qiuqiang Zhan,Guoping Dong
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:7 (6) 被引量:64
标识
DOI:10.1002/adom.201801482
摘要

Abstract Applications of trivalent rare earth (RE 3+ )‐doped light sources in solid‐state laser technology, optical communications, biolabeling, and solar energy management have stimulated a growing demand for broadband emission with flexible tunability and high efficiency. Codoping is a conventional strategy for manipulating the photoluminescence of active RE 3+ ions. However, energy transfer between sensitizers and activators usually induces nonradiative migration depletion that brings detrimental luminescent quenching. Here, a transparent framework is employed to assemble ordered RE 3+ ‐doped emitters to extend the emission spectral range by extracting photons from a variety of RE 3+ ions with sequential energy gradient. To block migration‐mediated depletion between different RE 3+ ions, a nanoscopic heterogeneous architecture is constructed to spatially confine the RE 3+ clusters via a “nanocrystals‐in‐glass composite” (NGC) structure. This bottom‐up strategy endows the obtained RE 3+ ‐doped NGC with high emission intensity (nearly one order of magnitude enhancement) and broadband near‐infrared emission from 1300 to 1600 nm, which covers nearly the whole low‐loss optical communication window. Most crucially, NGC is a versatile approach to design tunable broadband emission for the potential applications in high‐performance photonic devices, which also provides new opportunities for engineering multifunctional materials by integration and manipulation of diverse functional building units in a nanoscopic region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助茶茶采纳,获得10
刚刚
刚刚
辅助成灾完成签到,获得积分10
刚刚
刚刚
奋斗以松完成签到,获得积分10
1秒前
小会完成签到,获得积分10
1秒前
文龙发布了新的文献求助10
2秒前
万能图书馆应助孙午铭采纳,获得10
2秒前
3秒前
3秒前
4秒前
崔领发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
大个应助yz采纳,获得10
4秒前
5秒前
KIKI发布了新的文献求助10
5秒前
6秒前
坚强幼荷完成签到,获得积分10
6秒前
润森完成签到,获得积分10
6秒前
臭屁大王完成签到,获得积分10
6秒前
酷炫凉面完成签到,获得积分10
6秒前
加氢脱氧完成签到,获得积分20
7秒前
文龙完成签到,获得积分10
7秒前
7秒前
nakl发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
Eden发布了新的文献求助10
9秒前
义气莫茗完成签到,获得积分10
9秒前
顾矜应助HAHA采纳,获得10
9秒前
戴冬梅发布了新的文献求助10
10秒前
彭泽阳发布了新的文献求助10
10秒前
刘智舰完成签到,获得积分20
10秒前
11秒前
KIKI完成签到,获得积分20
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233