Quality evaluation of traditional Chinese medicines based on fingerprinting

计算机科学 指纹(计算) 质量(理念) 风险分析(工程) 生化工程 人工智能 数据挖掘 管理科学 数据科学 机器学习 模式识别(心理学) 工程类 医学 认识论 哲学
作者
Xiaoyan Liu,Wenwen Jiang,Mei Su,Yue Sun,Hongming Liu,Lei Nie,Hengchang Zang
出处
期刊:Journal of Separation Science [Wiley]
卷期号:43 (1): 6-17 被引量:89
标识
DOI:10.1002/jssc.201900365
摘要

Abstract The usage of traditional Chinese medicines has expanded globally, but the data about authentication, efficacy, and safety is far from sufficient to meet the criteria supporting their use worldwide due to complexity in the composition. Fingerprinting describes integral characterization and reflects interactive aspects of complex components; therefore, it can offer the possibility of evaluating quality of traditional Chinese medicines following the overall principle. Chemometric techniques introduce multivariate analytical methods into fingerprinting to obtain more information that is useful, which is consistent with the holistic thought and plays an important role in research on the substantial basis. In this review, we will start with three aspects to expound the quality evaluation of traditional Chinese medicines based on fingerprints. The analytical techniques used in developing fingerprints including chromatographic methods, spectroscopic methods, and capillary electrophoresis are introduced. Strategies for fingerprints analysis usually based on chemometric methods including unsupervised and supervised pattern recognition are described. Applications of fingerprints for multi‐component quantification, quality control, screening of bioactive components, and fingerprint‐efficacy relationship study are also outlined. Finally, we propose challenges and future perspectives of fingerprints in quality evaluation to promote the development of modernization and internationalization of traditional Chinese medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠惠发布了新的文献求助10
刚刚
AFEUWOS01完成签到,获得积分20
1秒前
冷傲的樱桃完成签到,获得积分10
1秒前
fighting发布了新的文献求助10
1秒前
zxw发布了新的文献求助10
2秒前
赵赵赵完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
唐人雄完成签到,获得积分10
3秒前
xctdyl1992完成签到,获得积分20
3秒前
3秒前
丰知然应助周凡淇采纳,获得10
3秒前
丰知然应助周凡淇采纳,获得10
3秒前
科研小白花完成签到,获得积分20
4秒前
纯真忆安完成签到,获得积分20
4秒前
4秒前
长孙归尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
sweetbearm应助通~采纳,获得10
5秒前
5秒前
青木蓝发布了新的文献求助10
6秒前
6秒前
6秒前
李健的粉丝团团长应助yzz采纳,获得10
6秒前
6秒前
6秒前
6秒前
呆萌士晋发布了新的文献求助10
6秒前
luxxxiu发布了新的文献求助10
6秒前
可爱的函函应助正直亦旋采纳,获得10
7秒前
铜豌豆完成签到 ,获得积分10
7秒前
爆米花应助鳗鱼灵寒采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
小庄完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794