Realizing natural ventilation potential through window control: The impact of occupant behavior

暖通空调 自然通风 能源消耗 热舒适性 通风(建筑) 模拟 能量回收通风 控制(管理) 能量(信号处理) 计算机科学 地铁列车时刻表 汽车工程 控制系统 工程类 建筑工程 空调 机械工程 人工智能 电气工程 物理 操作系统 统计 热力学 数学
作者
Yi Chen,Zheming Tong,Holly Samuelson,Wentao Wu,Ali Malkawi
出处
期刊:Energy Procedia [Elsevier]
卷期号:158: 3215-3221 被引量:11
标识
DOI:10.1016/j.egypro.2019.01.1004
摘要

As an increasingly popular green building technology, natural ventilation (NV) is an effective solution for better thermal comfort and lower HVAC system energy consumption. However, to achieve NV’s full potential in practice, it is critical to control windows and HVAC systems. Three main types of control schemes are examined in this study: spontaneous occupant control, informed occupant control, and fully automatic control. Five representative climates, ranging from hot, temperate, to severely cold, are tested for the effectiveness of each control scheme. The results confirmed the superior performance of the fully automatic system, especially with the model predictive control algorithm, which demonstrates a cooling energy saving of 17%–80%, with zero discomfort degree hours. Neither the informed or spontaneous occupant controls are able to maintain the indoor temperature within the comfort range at all times. In particular, the informed occupant operation following the fixed-schedule four-times-daily signals shows the worst thermal control capacity and leads to 1500–4000 discomfort degree hours. In terms of energy performance, the informed occupant control, by following the heuristic control signals, shows the least energy savings and even indicates energy waste in some scenarios. Based on the study’s results, it is recommended to either adopt the fully automatic natural ventilation control system to achieve maximum energy-saving potential or allow occupant autonomy for natural ventilation controls to achieve a lower budget for initial installation and maintenance cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cancan完成签到,获得积分10
1秒前
zhuangbaobao发布了新的文献求助10
4秒前
郭6666发布了新的文献求助10
5秒前
完美世界应助留胡子的火采纳,获得10
10秒前
脑洞疼应助郭6666采纳,获得10
10秒前
公冶愚志完成签到,获得积分10
13秒前
威武的皮卡丘完成签到,获得积分10
19秒前
19秒前
19秒前
大龙哥886应助ri_290采纳,获得10
20秒前
sevenhill应助Devastating采纳,获得10
22秒前
22秒前
今后应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得30
23秒前
拼搏应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得20
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
小新应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
鬼切关注了科研通微信公众号
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
scaler完成签到,获得积分10
24秒前
25秒前
xinbowey发布了新的文献求助10
25秒前
xiao完成签到 ,获得积分10
27秒前
28秒前
默默早晨完成签到 ,获得积分10
29秒前
yang发布了新的文献求助10
31秒前
科研通AI6应助Jodie采纳,获得10
33秒前
二次元喵酱完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555