愈创木酚
加氢脱氧
环己烷
催化作用
沸石
化学
产量(工程)
贵金属
有机化学
无机化学
材料科学
选择性
冶金
作者
Xun Wang,Shanhui Zhu,Sen Wang,Yue He,Yang Liu,Jianguo Wang,Weibin Fan,Yongkang Lv
出处
期刊:RSC Advances
[Royal Society of Chemistry]
日期:2019-01-01
卷期号:9 (7): 3868-3876
被引量:44
摘要
Hydrodeoxygenation (HDO) of guaiacol to cyclohexane, important for bio-oil upgrading, is usually performed at high reaction temperature (≥200 °C). In this work, low temperature transformation of guaiacol to cyclohexane was achieved at 140 °C over non-noble metal Ni/SiO2 and various zeolites. Among zeolites tested (HUSY, HMOR, Hβ, HZSM-5, SAPO-34), Hβ zeolite exhibited superior catalytic activity due to its appropriate pore structure and acid strength. The open pore with three-dimensional structure of Hβ facilitates the diffusion of guaiacol and intermediates. Meanwhile, weak acid strength of Hβ efficiently reduces the competitive adsorption of guaiacol, and then promotes the dehydration of intermediate 2-methoxycyclohexanol. Moreover, the catalytic performance in guaiacol HDO to cyclohexane is also closely related to Si/Al ratio of Hβ. Owing to its moderate acid density, the maximum yield of cyclohexane reaches 91.7% on Hβ(Si/Al = 50) combined with Ni/SiO2 at 140 °C, which is the lowest temperature ever reported over non-noble metal catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI