A Multispectral Imaging System to Assess Meat Quality

多光谱图像 RGB颜色模型 多光谱模式识别 样品(材料) 人工智能 主成分分析 像素 计算机科学 计算机视觉 遥感 地理 物理 热力学
作者
Wele Gedara Chaminda Bandara,G. W. K. Prabhath,D. W. S. C. B. Dissanayake,Vijitha Herath,Roshan Godaliyadda,M. P. B. Ekanayake,S.S.P. Vithana,S. M. D. Demini,Terrence Madhujith
标识
DOI:10.1109/r10-htc.2018.8629858
摘要

Multispectral imaging uses reflectance information of a number of discrete spectral bands to classify samples according to their quality defined using standard parameters. A multispectral image is rich in information compared to a normal RGB image. Therefore, a multispectral image can be used to classify samples more accurately than an RGB image. This paper discusses a design of a multispectral imaging system that can be used to assess the quality of meat. The system is comprised of six LEDs with nominal wavelengths between 405 nm and 740 nm. The light emitted from LEDs reach the meat sample placed inside a dark chamber through an integrating hemisphere. LEDs are lighted one at a time and images of the meat sample are captured for each flash separately using a smartphone camera. Eventually, all the images of the meat sample, taken at a specific time instance were integrated to form the multispectral image. The meat samples stored at $4 \circ \mathrm {c}$ were imaged up to four days at predetermined time intervals using the designed system. Once the data acquisition was completed, all the pixels of the multispectral image were represented as points in high dimensional space, which was then reduced to a lower dimensional space using Principal Component Analysis (PCA). It was observed that images of meat sample obtained at different time instances clustered into different regions in the lower dimensional space. The experiment was performed with chicken meat samples. This proves the viability of using multispectral imaging as a non-invasive and non-destructive method of assessing meat quality according to certain quality parameters. Off-the-shelf electronic components and a regular smartphone were used to build the system, thus making the system cost-effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_汪老头完成签到,获得积分10
3秒前
3秒前
4秒前
靖哥哥发布了新的文献求助30
5秒前
慧妞完成签到 ,获得积分10
5秒前
与光完成签到 ,获得积分10
6秒前
古的古的应助yanzu采纳,获得10
7秒前
小蘑菇应助nenoaowu采纳,获得30
7秒前
7秒前
脑洞疼应助包容新蕾采纳,获得10
8秒前
8秒前
ZhangZaikuan发布了新的文献求助10
8秒前
六金发布了新的文献求助10
8秒前
8秒前
张小小完成签到,获得积分10
8秒前
阿里山发布了新的文献求助10
9秒前
藏冰关注了科研通微信公众号
9秒前
10秒前
hah完成签到,获得积分10
11秒前
Elvira发布了新的文献求助10
11秒前
hhhhhhmt发布了新的文献求助10
11秒前
zp完成签到,获得积分10
11秒前
靖哥哥发布了新的文献求助30
11秒前
12秒前
zp发布了新的文献求助10
13秒前
阿飘应助文安采纳,获得10
14秒前
14秒前
15秒前
FashionBoy应助苗玉采纳,获得10
15秒前
充电宝应助鲜于夜白采纳,获得10
15秒前
sunshine应助疯子采纳,获得10
16秒前
17秒前
完美世界应助淑儿哥哥采纳,获得10
17秒前
18秒前
hah发布了新的文献求助10
19秒前
19秒前
22秒前
22秒前
22秒前
置默完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351347
求助须知:如何正确求助?哪些是违规求助? 2976817
关于积分的说明 8676705
捐赠科研通 2657976
什么是DOI,文献DOI怎么找? 1455336
科研通“疑难数据库(出版商)”最低求助积分说明 673836
邀请新用户注册赠送积分活动 664315