A hybrid localization algorithm using Inertial Sensor, Satellite and Wi-Fi for Smartphone

计算机科学 卫星 惯性参考系 惯性测量装置 算法 人工智能 工程类 物理 航空航天工程 量子力学
作者
Chun Liu,Yiqu Chen,Qu Wang,Fang Zhao,Haiyong Luo
标识
DOI:10.1109/upinlbs.2018.8559727
摘要

The complex environment based on Intelligent mobile phone navigation technology has become a research hotspot. The traditional combination navigation technology based on satellite and inertial navigation system can effectively compensate for the effect of short satellite signal loss, but the sensors used in strapdown inertial navigation system generally need high precision and sensitivity, and the existing smart phone built-in MEMS sensor has relatively low precision and sensitivity. One the other hand, the smart phone’s WiFi signal can be considered for improving the positioning performance of inertial navigation system in the absence of satellite, but the fingerprint matching Iocalization results are scattered and there is noise because of its non-Gaussian noise and multipath interference in the outdoor scene. In order to improve the positioning and navigation accuracy and robustness of the smart phone in complex environment, a WiFi-aided fusion positioning algorithm for satellite and inertial navigation system is proposed, which includes two stages, namely, navigational solution and optimization fusion. In order to improve the positioning accuracy, in the navigation solution phase, in the absence of satellite, the system outputs the location result of the outdoor WiFi location algorithm and the combined navigation location result to the optimized fusion device. In order to improve the robustness of the positioning, in the optimization fusion stage, the paper makes a second fusion of two positioning results through an improved fusion weighted average mechanism. The experimental results show that the positioning accuracy of the satellite can be improved obviously in the time of the effective time and the failure moment after WiFi calibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
michaelvin完成签到,获得积分10
1秒前
学术大白完成签到 ,获得积分10
4秒前
4秒前
SYT完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
魏伯安发布了新的文献求助10
9秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
李爱国应助aiming采纳,获得10
11秒前
无奈傲菡完成签到,获得积分10
12秒前
TT发布了新的文献求助10
12秒前
啦啦啦发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
荣荣完成签到,获得积分10
14秒前
15秒前
小安完成签到,获得积分10
16秒前
Spencer完成签到 ,获得积分10
16秒前
PengHu完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
21秒前
21秒前
ywang发布了新的文献求助10
22秒前
失眠虔纹完成签到,获得积分10
22秒前
斯文败类应助nextconnie采纳,获得10
22秒前
药学牛马发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
张无缺完成签到,获得积分10
33秒前
35秒前
CodeCraft应助MES采纳,获得10
36秒前
笨笨乘风完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849